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Abstract—This paper proposes a novel algorithm for multiview stereopsis that outputs a dense set of small rectangular patches

covering the surfaces visible in the images. Stereopsis is implemented as a match, expand, and filter procedure, starting from a sparse

set of matched keypoints, and repeatedly expanding these before using visibility constraints to filter away false matches. The keys to

the performance of the proposed algorithm are effective techniques for enforcing local photometric consistency and global visibility

constraints. Simple but effective methods are also proposed to turn the resulting patch model into a mesh which can be further refined

by an algorithm that enforces both photometric consistency and regularization constraints. The proposed approach automatically

detects and discards outliers and obstacles and does not require any initialization in the form of a visual hull, a bounding box, or valid

depth ranges. We have tested our algorithm on various data sets including objects with fine surface details, deep concavities, and thin

structures, outdoor scenes observed from a restricted set of viewpoints, and “crowded” scenes where moving obstacles appear in front

of a static structure of interest. A quantitative evaluation on the Middlebury benchmark [1] shows that the proposed method

outperforms all others submitted so far for four out of the six data sets.

Index Terms—Computer vision, 3D/stereo scene analysis, modeling and recovery of physical attributes, motion, shape.

Ç

1 INTRODUCTION

MULTIVIEW stereo (MVS) matching and reconstruction is
a key ingredient in the automated acquisition of

geometric object and scene models from multiple photo-
graphs or video clips, a process known as image-based
modeling or 3D photography. Potential applications range
from the construction of realistic object models for the film,
television, and video game industries, to the quantitative
recovery of metric information (metrology) for scientific and
engineering data analysis. According to a recent survey
provided by Seitz et al. [2], state-of-the-art MVS algorithms
achieve relative accuracy better than 1/200 (1 mm for a 20 cm
wide object) from a set of low-resolution (640� 480) images.
They can be roughly classified into four classes according to
the underlying object models: Voxel-based approaches [3], [4],
[5], [6], [7], [8], [9] require knowing a bounding box that
contains the scene, and their accuracy is limited by the
resolution of the voxel grid. Algorithms based on deformable
polygonal meshes [10], [11], [12] demand a good starting point
—for example, a visual hull model [13]—to initialize the
corresponding optimization process, which limits their
applicability. Approaches based on multiple depth maps [14],
[15], [16] are more flexible, but require fusing individual
depth maps into a single 3D model. Finally, patch-based
methods [17], [18] represent scene surfaces by collections of

small patches (or surfels). They are simple and effective and
often suffice for visualization purposes via point-based
rendering technique [19], but require a postprocessing step
to turn them into a mesh model that is more suitable for
image-based modeling applications.1

MVS algorithms can also be thought of in terms of the

data sets they can handle, for example, images of

. objects, where a single, compact object is usually fully
visible in a set of uncluttered images taken from all
around it, and it is relatively straightforward to
extract the apparent contours of the object and
compute its visual hull;

. scenes, where the target object(s) may be partially
occluded and/or embedded in clutter and the range
of viewpoints may be severely limited, preventing
the computation of effective bounding volumes
(typical examples are outdoor scenes with buildings,
vegetation, etc.); and

. crowded scenes, where moving obstacles appear in
different places in multiple images of a static
structure of interest (e.g., people passing in front of
a building).

The underlying object model is an important factor in

determining the flexibility of an approach, and voxel-based

or polygonal mesh-based methods are often limited to

object data sets, for which it is relatively easy to estimate an

initial bounding volume or often possible to compute a

visual hull model. Algorithms based on multiple depth

maps and collections of small surface patches are better

suited to the more challenging scene data sets. Crowded

scenes are even more difficult. Strecha et al. [15] use

expectation maximization and multiple depth maps to
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1. A patch-based surface representation is also used in [20] but in a
context of scene flow capture.
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reconstruct a crowded scene despite the presence of
occluders, but their approach is limited to a small number
of images (typically three) as the complexity of their model
is exponential in the number of input images. Goesele et al.
[21] have also proposed an algorithm to handle Internet
photo collections containing obstacles and produce im-
pressive results with a clever view selection scheme.

In this paper, we take a hybrid approach that is applicable
to all three types of input data. More concretely, we first
propose a flexible patch-based MVS algorithm that outputs a
dense collection of small oriented rectangular patches,
obtained from pixel-level correspondences and tightly cover-
ing the observed surfaces except in small textureless or
occluded regions. The proposed algorithm consists of a
simple match, expand, and filter procedure (Fig. 1): 1) Matching:
Features found by Harris and difference-of-Gaussians
operators are first matched across multiple pictures, yielding
a sparse set of patches associated with salient image regions.
Given these initial matches, the following two steps are
repeated n times (n ¼ 3 in all our experiments). 2) Expansion:
A technique similar to [17], [18], [22], [23], [24] is used to
spread the initial matches to nearby pixels and obtain a dense
set of patches. 3) Filtering: Visibility (and a weak form of
regularization) constraints are then used to eliminate in-
correct matches. Although our patch-based algorithm is
similar to the method proposed by Lhuillier and Quan [17], it
replaces their greedy expansion procedure by iteration
between expansion and filtering steps, which allows us to
process complicated surfaces and reject outliers more
effectively. Optionally, the resulting patch model can be
turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh-
based MVS algorithm that enforces the photometric consis-
tency with regularization constraints. The additional com-
putational cost of the optional step is balanced by the even
higher accuracy it affords. Our algorithm does not require
any initialization in the form of a visual hull model, a
bounding box, or valid depth ranges. In addition, unlike
many other methods that basically assume fronto-parallel
surfaces and only estimate the depth of recovered points, it
actually estimates the surface orientation while enforcing the
local photometric consistency, which is important in practice
to obtain accurate models for data sets with sparse input
images or without salient textures. As shown by our
experiments, the proposed algorithm effectively handles
the three types of data mentioned above, and, in particular, it

outputs accurate object and scene models with fine surface
detail despite low-texture regions, large concavities, and/or
thin, high-curvature parts. A quantitative evaluation on the
Middlebury benchmark [1] shows that the proposed method
outperforms all others submitted so far in terms of both
accuracy and completeness for four out of the six data sets.

The rest of this paper is organized as follows: Section 2
presents the key building blocks of the proposed approach.
Section 3 presents our patch-based MVS algorithm, and
Section 4 describes how to convert a patch model into a
mesh and our polygonal mesh-based refinement algorithm.
Experimental results and discussion are given in Section 5,
and Section 6 concludes the paper with some future work.
The implementation of the patch-based MVS algorithm
(PMVS) is publicly available at [25]. A preliminary version
of this paper appeared in [26].

2 KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three
steps: a patch-based MVS algorithm that is the core
reconstruction step in our approach and reconstructs a set
of oriented points (or patches) covering the surface of an
object or a scene of interests; the conversion of the patches
into a polygonal mesh model; and finally a polygonal-mesh
based MVS algorithm that refines the mesh. In this section,
we introduce a couple of fundamental building blocks of
the patch-based MVS algorithm, some of which are also
used in our mesh refinement algorithm.

2.1 Patch Model

A patch p is essentially a local tangent plane approximation
of a surface. Its geometry is fully determined by its center
cðpÞ, unit normal vector nðpÞ oriented toward the cameras
observing it, and a reference image RðpÞ in which p is visible
(see Fig. 2). More concretely, a patch is a (3D) rectangle,
which is oriented so that one of its edges is parallel to the
x-axis of the reference camera (the camera associated with
RðpÞ). The extent of the rectangle is chosen so that the
smallest axis-aligned square in RðpÞ containing its image
projection is of size �� � pixels in size (� is either 5 or 7 in
all of our experiments).

2.2 Photometric Discrepancy Function

Let V ðpÞ denote a set of images in which p is visible (see
Section 3 on how to estimate V ðpÞ and choose the reference
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Fig. 1. Overall approach. From left to right: A sample input image, detected features, reconstructed patches after the initial matching, final patches

after expansion and filtering, and the mesh model.



image RðpÞ 2 V ðpÞ). The photometric discrepancy function
gðpÞ for p is defined as

gðpÞ ¼ 1

jV ðpÞ nRðpÞj
X

I2V ðpÞnRðpÞ
hðp; I; RðpÞÞ; ð1Þ

where hðp; I1; I2Þ is, in turn, defined to be a pairwise
photometric discrepancy function between images I1 and
I2. More concretely (see Fig. 2), given a pair of visible images
I1 and I2, hðp; I1; I2Þ is computed by 1) overlaying a �� �
grid on p; 2) sampling pixel colors qðp; IiÞ through bilinear
interpolation at image projections of all the grid points in
each image Ii

2; and 3) computing one minus the normalized
cross correlation score between qðp; I1Þ and qðp; I2Þ.3

We have so far assumed that the surface of an object or a
scene is Lambertian, and the photometric discrepancy
function gðpÞ defined above may not work well in the
presence of specular highlights or obstacles (e.g., pedes-
trians in front of buildings, as shown in Fig. 10). In the
proposed approach, we handle non-Lambertian effects by
simply ignoring images with bad photometric discrepancy
scores. Concretely, only images whose pairwise photo-
metric discrepancy score with the reference image RðpÞ is
below a certain threshold � are used for the evaluation (see
Section 3 for the choice of this threshold):

V �ðpÞ ¼ fIjI 2 V ðpÞ; hðp; I; RðpÞÞ � �g; ð2Þ

g�ðpÞ ¼ 1

jV �ðpÞ nRðpÞj
X

I2V �ðpÞnRðpÞ
hðp; I; RðpÞÞ: ð3Þ

We simply replaced V ðpÞ in (1) with the filtered one V �ðpÞ to
obtain the new formula (3). Note that V �ðpÞ contains the
reference image RðpÞ by definition. Also note that the new
discrepancy function g�ðpÞ still does not work if RðpÞ
contains specular highlights or obstacles, but our patch
generation algorithm guarantees that this does not occur, as
will be detailed in Section 3.1.2.

2.3 Patch Optimization

Having defined the photometric discrepancy function g�ðpÞ,
our goal is to recover patches whose discrepancy scores are

small. Each patch p is reconstructed separately in two steps:
1) initialization of the corresponding parameters, namely,
its center cðpÞ, normal nðpÞ, visible images V �ðpÞ, and the
reference image RðpÞ; and 2) optimization of its geometric
component, cðpÞ and nðpÞ. Simple but effective initialization
methods for the first step are detailed in Sections 3 and 4,
and we focus here on the second optimization step. The
geometric parameters, cðpÞ and nðpÞ, are optimized by
simply minimizing the photometric discrepancy score g�ðpÞ
with respect to these unknowns. To simplify computations,
we constrain cðpÞ to lie on a ray such that its image
projection in one of the visible images does not change (see
Section 3 for the choice of the image), reducing its number
of degrees of freedom to one and solving only for a depth.
nðpÞ is, in turn, parameterized by Euler angles (yaw and
pitch), yielding an optimization problem within three
parameters only, which is solved by a conjugate gradient
method [28].

2.4 Image Model

The biggest advantage of the patch-based surface repre-
sentation is its flexibility. However, due to the lack of
connectivity information, it is not easy to just search or
access neighboring patches, enforce regularization, etc. In
our approach, we keep track of the image projections of
reconstructed patches in their visible images to help
performing these tasks. Concretely, we associate with each
image Ii a regular grid of �1 � �1 pixels cells Ciðx; yÞ as in
Fig. 3 (�1 ¼ 2 in our experiments). Given a patch p and its
visible images V ðpÞ, we simply project p into each image in
V ðpÞ to identify the corresponding cell. Then, each cell
Ciðx; yÞ remembers the set of patches Qiðx; yÞ that project
into it. Similarly, we use Q�i ðx; yÞ to denote the patches that
are obtained by the same procedure but with V �ðpÞ instead
of V ðpÞ. Please see the next section for how we make use of
Qiðx; yÞ and Q�i ðx; yÞ to effectively reconstruct patches.

3 PATCH RECONSTRUCTION

Our patch-based MVS algorithm attempts to reconstruct at
least one patch in every image cell Ciðx; yÞ. It is divided into
three steps: 1) initial feature matching, 2) patch expansion,
and 3) patch filtering. The purpose of the initial feature
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Fig. 2. (a) A patch p is a (3D) rectangle with its center and normal
denoted as cðpÞ and nðpÞ, respectively. (b) The photometric discrepancy
fðp; I1; I2Þ of a patch is given by one minus the normalized cross
correlation score between sets qðp; IiÞ of sampled pixel colors. See text
for details.

2. We have also tried bicubic interpolation but have not observed
noticeable differences.

3. See [27] for an example of other photometric discrepancy functions.

Fig. 3. We keep track of image projections of reconstructed patches in
their visible images to perform fundamental tasks such as accessing
neighboring patches, enforcing regularization, etc. See text for more
details.



matching step is to generate a sparse set of patches (possibly
containing some false positives). The expansion and the
filtering steps are iterated n times (n ¼ 3 in our experiments)
to make patches dense and remove erroneous matches. The
three steps are detailed in the following sections.

3.1 Initial Feature Matching

3.1.1 Feature Detection

First, we detect blob and corner features in each image using

the Difference-of-Gaussian (DoG) and Harris operators.

Briefly, let us denote by G� a 2D Gaussian with standard

deviation �. The response of the DoG filter, at some image

point, is given by D ¼ jðG�0
�G ffiffi

2
p

�0
Þ � Ij, where � denotes

the 2D convolution operator. The response of the Harris

filter is, in turn, defined asH ¼ detðMÞ � �trace2ðMÞ, where

M ¼ G�1
� ðrIrIT Þ and rI ¼ ½@I@x @I@y�

T . rI is computed by

convolving the image I with the partial derivatives of the

GaussianG�2
. Note that ðrIrIT Þ is a 2� 2 matrix, andG�1

is

convolved with each of its elements to obtain M. We use

�0 ¼ �1 ¼ �2 ¼ 1 pixel and � ¼ 0:06 in all of our experi-

ments. To ensure uniform coverage, we lay over each image

a coarse regular grid of �2 � �2 pixels blocks and return as

features the � local maxima with the strongest responses in

each block for each operator (we use �2 ¼ 32 and � ¼ 4 in all

our experiments).

3.1.2 Feature Matching

Consider an image Ii and denote by OðIiÞ the optical center
of the corresponding camera. For each feature f detected in
Ii, we collect in the other images the set F of features f 0 of
the same type (Harris or DoG) that lie within two pixels
from the corresponding epipolar lines, and triangulate the
3D points associated with the pairs ðf; f 0Þ. We then consider
these points in order of increasing distance from OðIiÞ as
potential patch centers and attempt to generate a patch from
the points one by one until we succeed,4 using the following
procedure: Given a pair of features ðf; f 0Þ, we first construct
a patch candidate p with its center cðpÞ, normal vector nðpÞ,
and reference image RðpÞ initialized as

cðpÞ  fTriangulation from f and f 0g; ð4Þ

nðpÞ  cðpÞOðIiÞ
������!

=jcðpÞOðIiÞ
������!

j; ð5Þ

RðpÞ  Ii: ð6Þ

Since reconstructed patches are sparse with possibly many
false positives in the initial feature matching step, we
simply assume that the patch is visible in an image Ii when
the angle between the patch normal and the direction from
the patch to the optical center OðIiÞ of the camera is below a
certain threshold � (� ¼ 	=3 in our experiments)5:

V ðpÞ  IjnðpÞ � cðpÞOðIÞ
������!

=jcðpÞOðIÞ
������!

j > cosð�Þ
n o

: ð7Þ

V �ðpÞ is also initialized from V ðpÞ by (2). Having initialized
all of the parameters for the patch candidate p, we refine
cðpÞ and nðpÞ by the patch optimization procedure
described in Section 2.3, then update the visibility informa-
tion V ðpÞ and V �ðpÞ with the refined geometry according to
(7) and (2). During the optimization, cðpÞ is constrained to
lie on a ray such that its image projection in RðpÞ does not
change. If jV �ðpÞj is at least 
, that is, if there exist at least

 images with low photometric discrepancy, the patch
generation is deemed a success and p is stored in the
corresponding cells of the visible images (update of Qiðx; yÞ
and Q�i ðx; yÞ). Note that we have used (2) to compute V �ðpÞ
before and after the optimization, and the threshold � in (2)
is set to 0.6 and 0.3, respectively, because the photometric
discrepancy score of a patch may be high before the
optimization with its imprecise geometry. Also note that, in
order to speed up the computation, once a patch has been
reconstructed and stored in a cell, all of the features in the
cell are removed and are not used anymore. The overall
algorithm description for this step is given in Fig. 4. Finally,
let us explain how this matching procedure is able to handle
image artifacts such as specular highlights and obstacles
successfully and guarantee that reference images do not
contain such artifacts. If the matching procedure starts with
a feature in an image containing artifacts, the image
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Fig. 4. Feature matching algorithm. (a) An example showing the features

f 0 2 F satisfying the epipolar constraint in images I2 and I3 as they are

matched to feature f in image I1 (this is an illustration only, not showing

actual detected features). (b) The matching algorithm.

4. Empirically, this heuristic has proven to be effective in selecting
mostly correct matches at a modest computational expense.

5. In the next patch expansion step, where patches become dense and
less erroneous, a simple depth-map test is used for visibility estimation.



becomes a reference and the patch optimization fails.
However, this does not prevent the procedure starting
from another image without artifacts, which will succeed.6

3.2 Expansion

The goal of the expansion step is to reconstruct at least one
patch in every image cell Ciðx; yÞ, and we repeat taking
existing patches and generating new ones in nearby empty
spaces. More concretely, given a patch p, we first identify a
set of neighboring image cells CðpÞ satisfying certain criteria,
then perform a patch expansion procedure for each one of
these, as detailed in the following sections.

3.2.1 Identifying Cells for Expansion

Given a patch p, we initialize CðpÞ by collecting the
neighboring image cells in its each visible image:

CðpÞ ¼ fCiðx0; y0Þjp 2 Qiðx; yÞ; jx� x0j þ jy� y0j ¼ 1g:

First, the expansion is unnecessary if a patch has already
been reconstructed there. Concretely, if an image cell
Ciðx0; y0Þ 2 CðpÞ contains a patch p0, which is a neighbor of
p, Ciðx0; y0Þ is removed from the set CðpÞ, where a pair of
patches p and p0 are defined to be neighbors if

jðcðpÞ � cðp0ÞÞ � nðpÞj þ jðcðpÞ � cðp0ÞÞ � nðp0Þj < 2�1: ð8Þ

�1 is the distance corresponding to an image displacement
of �1 pixels in the reference image RðpÞ at the depth of the
centers of cðpÞ and cðp0Þ. Second, even when no patch has
been reconstructed, the expansion procedure is unnecessary
for an image cell if there is a depth discontinuity viewed
from the corresponding camera (see an example in Fig. 5).7

Since it is, in practice, difficult to judge the presence of
depth discontinuities before actually reconstructing a sur-
face, we simply judge that the expansion is unnecessary due
to a depth discontinuity if Q�i ðx0; y0Þ is not empty: If Ciðx0; y0Þ
already contains a patch whose photometric discrepancy
score associated with Ii is better than the threshold �
defined in (2).

3.2.2 Expansion Procedure

For each collected image cell Ciðx; yÞ in CðpÞ, the following
expansion procedure is performed to generate a new patch p0:
We first initialize nðp0Þ, Rðp0Þ, and V ðp0Þ by the correspond-
ing values of p. cðp0Þ is, in turn, initialized as the point
where the viewing ray passing through the center of Ciðx; yÞ
intersects the plane containing the patch p. After computing
V �ðp0Þ from V ðpÞ by using (2), we refine cðp0Þ and nðp0Þ by
the optimization procedure described in Section 2.3. During
the optimization, cðp0Þ is constrained to lie on a ray such
that its image projection in Ii does not change in order to
make sure that the patch always projects inside the image
cell Ciðx; yÞ. After the optimization, we add to V ðp0Þ a set of
images in which the patch should be visible according to a
depth-map test, where a depth value is computed for each
image cell instead of a pixel, then update V �ðp0Þ according
to (2). It is important to add visible images obtained from
the depth-map test to V ðp0Þ instead of replacing the whole
set, because some matches (and thus the corresponding
depth map information) may be incorrect at this point. Due
to this update rule, the visibility information associated
with reconstructed patches becomes inconsistent with each
other, a fact that is used in the following filtering step to
reject erroneous patches. Finally, if jV �ðp0Þj � 
, we accept
the patch as a success and update Qiðx; yÞ and Q�i ðx; yÞ for
its visible images. Note that, as in the initial feature
matching step, � is set to 0.6 and 0.3, before and after the
optimization, respectively, but we loosen (increase) both
values by 0.2 after each expansion/filtering iteration in
order to handle challenging (homogeneous or relatively
texture-less) regions in the latter iterations. The overall
algorithm description is given in Fig. 6. Note that when
segmentation information is available, we simply ignore
image cells in the background during initial feature
matching and the expansion procedure, which guarantees
that no patches are reconstructed in the background. The
bounding volume information is not used to filter out
erroneous patches in our experiments, although it would
not be difficult to do so.
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6. Of course, this relatively simple procedure may not be perfect and
may yield mistakes, but we also have a filtering step described in Section 3.3
to handle such errors.

7. This second selection criteria is for computational efficiency, and can
be removed for simplicity because the filtering step can remove erroneous
patches possibly caused by bad expansion procedure.

Fig. 5. (a) Given an existing patch, an expansion procedure is performed
to generate new ones for the neighboring empty image cells in its visible
images. The expansion procedure is not performed for an image cell
(b) if there already exists a neighboring patch reconstructed there or
(c) if there is a depth discontinuity when viewed from the camera. See
text for more details.

Fig. 6. Patch expansion algorithm. The expansion and the filtering
procedure is iterated n ð¼ 3Þ times to make patches dense and remove
outliers.



3.3 Filtering

The following three filters are used to remove erroneous
patches. Our first filter relies on visibility consistency. Let
UðpÞ denote the set of patches p0 that are inconsistent with
the current visibility information—that is, p and p0 are not
neighbors (8), but are stored in the same cell of one of the
images where p is visible (Fig. 7). Then, p is filtered out as an
outlier if the following inequality holds

jV �ðpÞjð1� g�ðpÞÞ <
X

pi2UðpÞ
1� g�ðpiÞ:

Intuitively, when p is an outlier, both 1� g�ðpÞ and jV �ðpÞj
are expected to be small, and p is likely to be removed. The
second filter also enforces visibility consistency but more
strictly: For each patch p, we compute the number of images
in V �ðpÞ where p is visible according to a depth-map test. If
the number is less than 
, p is filtered out as an outlier.
Finally, in the third filter, we enforce a weak form of
regularization: For each patch p, we collect the patches lying
in its own and adjacent cells in all images of V ðpÞ. If the
proportion of patches that are neighbors of p (8) in this set is
lower than 0.25, p is removed as an outlier.

4 POLYGONAL MESH RECONSTRUCTION

The reconstructed patches form an oriented point, or surfel
model. Despite the growing popularity of this type of
models in the computer graphics community [19], it
remains desirable to turn our collection of patches into
surface meshes for image-based modeling applications. In
the following, we first propose two algorithms for initializ-
ing a polygonal mesh model from reconstructed patches,
then a surface refinement algorithm, which polishes up a
surface with explicit regularization constraints.

4.1 Mesh Initialization

4.1.1 Poisson Surface Reconstruction

Our first approach to mesh initialization is to simply use
Poisson Surface Reconstruction (PSR) software [29] that
directly converts a set of oriented points into a triangulated
mesh model. The resolution of the mesh model is adaptive,
and the size of a triangle depends on the density of the
nearby oriented points: The denser the points are, the finer
the triangles become. The PSR software outputs a closed
mesh model even when patches are only reconstructed for a
part of a scene. In order to remove extraneous portions of the
mesh, we discard triangles whose average edge length is

greater than six times the average edge length of the whole
mesh since triangles are large where there are no patches.

4.1.2 Iterative Snapping

The PSR software produces high-quality meshes and is
applicable to both object and scene data sets. However, it
cannot make use of the foreground/background segmenta-
tion information associated with each input image that is
often available for object data sets. Therefore, our second
approach for mesh initialization is to compute a visual hull
model from the segmentation information, which is then
iteratively deformed toward reconstructed patches. Note
that this algorithm is applicable only to object data sets with
segmentation information. The iterative deformation algo-
rithm is a variant of the approach presented in [12].
Concretely, the 3D coordinates of all the vertices in a mesh
model are optimized by the gradient decent method while
minimizing the sum of two per-vertex energy functions.
The first function EsðviÞ measures a geometric smoothness
energy and is defined as

EsðviÞ ¼ j� �1�vi þ �2�2vij2=
2; ð9Þ

where � denotes the (discrete) Laplacian operator relative
to a local parameterization of the tangent plane in vi, 
 is
the average edge length of the mesh model, and, with abuse
of notation, vi denotes the position of a vertex vi (�1 ¼ 0:6
and �2 ¼ 0:4 are used in all our experiments). The second
function EpðviÞ enforces the consistency with the recon-
structed patches (photometric discrepancy term) and is
defined as

EpðviÞ ¼ max �0:2;min 0:2;
dðviÞ � nðviÞ




� �� �2

; ð10Þ

where nðviÞ is the outward unit normal of the surface at vi.
dðviÞ is the signed distance between vi and the recon-
structed patches along nðviÞ, which is estimated as follows:
For each patch p whose normal nðpÞ is compatible with that
of vi (i.e., nðpÞ � nðviÞ > 0), we compute a distance between
its center cðpÞ and the line defined by vi and nðviÞ, then
collect the set �ðviÞ of 	 ¼ 10 closest patches (see Fig. 8).
Finally, dðviÞ is computed as the weighted average distance
from vi to the centers of the patches in �ðviÞ along nðviÞ:

dðviÞ ¼
X

p2�ðviÞ
wðpÞ½nðviÞ � ðcðpÞ � viÞ�;
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Fig. 7. The first filter enforces global visibility consistency to remove
outliers (red patches). An arrow pointing from pi to Ij represents a
relationship Ij 2 V ðpiÞ. In both cases (left and right), UðpÞ denotes a set
of patches that is inconsistent in visibility information with p.

Fig. 8. In the iterative snapping algorithm, for each vertex vi on the mesh
model, we first collect 	 ð¼ 10Þ patches �ðviÞ that are closest to the line
defined by vi and a surface normal nðviÞ at the vertex. A (signed)
distance dðviÞ from vi to �ðviÞ is used to compute photometric
discrepancy term. See text for details.



where the weights wðpÞ are Gaussian functions of the
distance between cðpÞ and the line, with standard
deviation �1 defined as in Section 3.2.1, and normalized
to sum to 1.8 We iterate until convergence, while applying
remeshing operations (edge split, contract, and swap [30])
to avoid self-intersections once every five gradient descent
steps so that the edge lengths of the triangles on a mesh
become approximately the same. After convergence, we
increase the resolution of the mesh and repeat the process
until the desired resolution is obtained, in particular, until
image projections of edges of the mesh become approxi-
mately �1 pixels in length.

4.2 Mesh Refinement

The mesh refinement is performed via an energy mini-
mization approach similar to our iterative snapping
procedure described in Section 4.1.2: The 3D coordinates
of all of the vertices are optimized with respect to a sum of
per-vertex photometric discrepancy and geometric smooth-
ness energy functions. The smoothness function is the same
as before (9). The photometric discrepancy energy is
computed in the following two steps: 1) The depth and
the orientation of a surface are estimated at each vertex
independently for each pair of its visible images by using
the patch optimization procedure; 2) the estimated depth
and orientation information are combined to compute the
energy function. More concretely, let V ðviÞ denotes a set of
images in which vi is visible that is estimated from a
standard depth-map test with a current mesh model. In the
first step, for each pair ðIj; IkÞ of images in V ðviÞ, we create
a patch p on the tangent plane of the mesh at vi, namely,
setting cðpÞ  cðviÞ and nðpÞ  nðviÞ, then minimize the
photometric discrepancy function hðp; Ij; IkÞ with respect to
cðpÞ and nðpÞ as in Section 2.3.9 Having obtained a set of
patches P ðviÞ after the patch optimization for pairs of
images, the photometric discrepancy energy is computed as
the sum of one minus (scaled) Gaussian function of the
distance between each patch and the vertex:

E0pðviÞ ¼ �3

X
p2P ðviÞ

1� exp � d0ðvi; pÞ

=4

� �2
 !

;

d0ðvi; pÞ ¼ nðpÞ � ðcðpÞ � viÞ:
ð11Þ

d0ðvi; pÞ is the (signed) distance between the patch p and the
vertex vi along the patch normal, 
 is the average edge
length of the mesh, and �3 is the linear combination weight.
Note that we borrow the idea of occlusion robust photo-
consistency proposed in [31], and first obtain multiple
estimates of the depth and the orientation from pairs of
visible images, instead of using all of the visible images at
once to obtain a single estimate. Then, in the second step,
multiple estimates are combined with Gaussian functions
that are robust to outliers. Also note that the patches P ðviÞ
are computed only once at the beginning as preprocessing
for each vertex, while the photometric discrepancy energy
(11) is evaluated many times in the energy minimization

procedure performed by a conjugate gradient method [28].
Fig. 9 illustrates how this refined photometric discrepancy
energy handles outliers, or “bad” images and patches
robustly and avoids false local minima. Although the
fundamental idea has not changed from [31], there are a
couple of differences worth mentioning. First, in addition to
a depth value, a surface normal is incorporated in our
framework, both in the patch optimization step and in the
final formula (11). Second, we use a Gaussian (kernel)
function to combine multiple hypothesis (patches) (11),
while a box function is chosen in [31] with discretized
voxels, which ends up simply casting votes to voxels.

5 EXPERIMENTS AND DISCUSSION

5.1 Data Sets

Fig. 10 shows sample input images of all of the data sets
used in our experiments. Table 1 lists the number of input
images, their approximate size, the corresponding choice of
parameters, the algorithm used to initialize a mesh model
(either PSR software [29] or iterative snapping after visual
hull construction, denoted as VH), and whether images
contain obstacles (crowded scenes) or not. Note that all of
the parameters except for �, 
, and �3 have been fixed in our
experiments. The roman and skull data sets have been
acquired in our lab, while other data sets have been kindly
provided by S. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski (temple and dino, see also [2]), S. Sullivan and
Industrial Light and Magic (face, face-2, body, steps-1, and
wall), and C. Strecha (fountain, city-hall, brussels, and castle).
The steps-2 data set has been artificially generated by
manually painting a red cartoonish human in each image of
steps-1 images. To further test the robustness of our
algorithm against outliers, the steps-3 data set has been
created from steps-2 by replacing the fifth image with the
third, without changing camera parameters. This is a
particularly challenging example since the entire fifth image
must be detected as an outlier.

1368 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 8, AUGUST 2010

8. EpðviÞ has a form of the Huber function so that the magnitude of its
derivative does not become too large in each gradient descent step to ensure
stable deformation and avoid mesh self-intersections.

9. During the optimization, the patch center cðpÞ is constrained to lie on a
ray passing through vi in parallel to nðviÞ.

Fig. 9. (a) Pairwise photometric discrepancy scores hðp; Ii; IjÞ at a
vertex of temple data set. For better illustration, among three degrees of
freedom in the optimization (a depth and a normal), the discrepancy
scores are plotted for different values of depths with a fixed normal. A
triangle on each plot illustrates the location of a local minimum that is a
depth value obtained from the patch optimization procedure for a pair of
images. (b) The sum of all of the pairwise discrepancy scores giving an
inaccurate local minimum location and our proposed photometric
discrepancy energy (11). (c) An input image of temple with a red circle
illustrating the location of the vertex.



5.2 Reconstructed Patches and Mesh Models

Reconstructed patches, texture-mapped using the reference

image, are shown in Fig. 11. As illustrated by the figure,

patches are densely covering reconstructed object and scene

surfaces. city-hall is an interesting example because view-

points change significantly across input cameras, and

frontal statues are visible in some images in close-ups.

Reconstructed patches automatically become denser for

such places because the resolution of patches is controlled

by that of input images (we try to reconstruct at least one

patch in every image cell). The wall data set is challenging

since a large portion of several of the input pictures consists

of running water. Nonetheless, we have successfully

detected and ignored the corresponding image regions as
outliers. Obstacles such as pedestrians in brussels or
cartoonish humans in steps-{2,3} do not show up in the
texture mapped patches because our patch generation
algorithm guarantees that they do not appear in reference
images. Fig. 12 shows patches obtained from the initial
feature matching step that are sparse, noisy, and erroneous.
Fig. 13, in turn, shows patches that are removed in each of
the three filtering steps. As illustrated by the figure, our
filtering procedure is aggressive and removes a lot of
patches possibly containing true-positives, but this is not a
problem since the expansion and the filtering steps are
iterated a couple of times in our algorithm. The number of
the reconstructed patches at each step of the algorithm is
given in Fig. 14.

A visual hull model is used to initialize a mesh model
before the iterative snapping procedure for all object data
sets except face-2 and body where viewpoints are limited and
PSR software is used instead. The visual hull model is
computed by using the EPVH software by Franco and Boyer
[32] except for the dino data set, where an object is not fully
visible in some images and a standard voxel-based visual
hull algorithm is used instead (see Fig. 15). Mesh models
before the refinement—that is, models obtained either by the
visual hull construction followed by the iterative snapping
(Section 4.1.2) or PSR software (Section 4.1.1) are shown for
some data sets in the top row of Fig. 17.

Mesh models after the refinement step are shown in
Fig. 16 for all of the data sets. Our algorithm has successfully
reconstructed various surface structures such as the high-
curvature and/or shallow surface details of roman, the thin
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Fig. 10. Sample input images of all of the data sets used in our experiments. The top row shows the object data sets. From left to right: roman,

temple, dino, skull, face-1, face-2, and body. The bottom three rows show the scenes and the crowded scenes data sets. From left to right and top to

bottom: steps-1, city-hall, wall, fountain, brussels, steps-{2,3}, and castle. Multiple images are shown for brussels, steps-{2,3}, and castle.

TABLE 1
Characteristics of the Data Sets Used in Our Experiments



cheekbone and deep eye sockets of skull, and the intricate
facial features of face-1 and face-2. The castle is a very
interesting data set in that cameras are surrounded by
buildings and its structure is “inside-out” compared to
typical object data sets. Nonetheless, our algorithm has been
directly used without any modifications to recover its
overall structure. Finally, the figure illustrates that our
algorithm has successfully handled obstacles in crowded
scene data sets. The background building is reconstructed for
the brussels data set, despite people occluding various parts
of the scene. Reconstructed models of steps-2 and steps-3 do

not look much different from that of steps-1 despite many

obstacles. As mentioned before, steps-3 is a challenging

example with a significant amount of outliers and some of

the details are missing in the reconstructed model (also see

Fig. 11), but this is simply because the corresponding surface

regions are not visible in enough number of images. Close-

ups of some of the reconstructions are shown in Fig. 17

before and after the mesh refinement step, qualitatively

illustrating that the refinement step removes high frequency

noise while retaining sharp structure.
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Fig. 11. Reconstructed patches. In the second last row, patches are shown for steps-1, steps-2, and steps-3 from left to right. See text for the details.



5.3 Evaluations

Quantitative evaluations of state-of-the-art MVS algorithms
are presented in [2] in terms of accuracy (distance d such
that a given percentage of the reconstruction is within d

from the ground truth model) and completeness (percentage
of the ground truth model that is within a given distance
from the reconstruction). The data sets consist of two
objects (temple and dino), each of which, in turn, consists of
three data sets (sparse ring, ring, and full) with different
numbers of input images, ranging from 15 to more than
300. Note that the sparse ring temple and sparse ring dino data
sets have been used in our experiments so far. Table 2 lists

the evaluation results with other top performers in the main

table provided at [2], and shows that our approach

outperforms all of the other evaluated techniques in terms

of both accuracy and completeness for four out of the six data

sets (the intermediate temple and all the three dino data sets).

Our approach also has the best completeness score for the

sparse ring temple data set.10 We believe that one reason why

our results are among the best for these data sets is that we

take into account surface orientation properly in computing
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Fig. 12. Reconstructed patches after the initial feature matching step. Patches are sparse, noisy, and erroneous before the expansion and the
filtering.

Fig. 13. Three filters are used to remove erroneous patches (Section 3.3). The first two filters enforce global visibility consistency and the last filter
enforces weak regularization. Patches detected as outliers by each of the three filters are shown for the first iteration of our algorithm. Note that more
patches are added during the subsequent iterations, leading to the results of Fig. 11.

10. Rendered views of the reconstructions and all of the quantitative
evaluations can be found at [2].



photometric consistency, which is important when struc-
tures do not have salient textures or images are sparse and
perspective distortion effects are not negligible.

Strecha et al. provide quantitative evaluations for two
scene data sets, fountain and herzjesu [35], [36] (see Table 3).11

A measure similar to completeness in [2] is used in their
evaluation. More concretely, each entry in the table shows
the percentage of the laser-scanned model that is within
d distance from the corresponding reconstruction. � is the
standard deviation of depth estimates of the laser range
scanner used in their experiments. For each column, the best
and the second best completeness scores are highlighted in
red and green, respectively. Note that the herzjesu data set is
used only in Table 3 in this paper, and qualitative results
(e.g., renderings of our reconstructed mesh model) are
available in [36]. As the table shows, our method outper-
forms the others, especially for herzjesu. It is also worth
mentioning that, as shown in Figs. 11 and 16, our method
has been able to recover a building in the background for
fountain that is partially visible in only a few frames, while
none of the other approaches have been able to recover such
structure, probably due to the use of the provided bounding
box information excluding the building. Note that our
algorithm does not require a bounding box or a visual hull
model, valid depth ranges, etc., and simply tries to
reconstruct whatever is visible in the input images, which
is one of its main advantages.

Table 4 lists the running time of the proposed algorithms
and numbers of triangles in the final mesh models. A
standard PC with Dual Xeon 2.66 GHz is used for the
experiments. The patch generation algorithm is very
efficient, in particular, takes only a few minutes for temple

and dino, in comparison to most other state-of-the-art
techniques evaluated at [2] that take more than half an
hour. It is primarily because the algorithm does not involve
any large optimization (only three degrees of freedom for
the patch optimization), and patches are essentially recov-
ered independently. On the other hand, the iterative
snapping algorithm is very slow, which is in part due to
the iteration of the mesh deformation and the remeshing
operations that are frequently applied to prevent self-
intersections. The advantage of using the iterative snapping
algorithm over PSR software is only that silhouette
consistency can be enforced in initializing a mesh model.
The mesh refinement step is also slow due to the energy
minimization procedure by a conjugate gradient method,
where the number of unknowns is three times the number
of vertices in a high-resolution mesh model, which scales up
to even more than 10 million for some data sets. To
demonstrate that PSR software can be used instead to
produce similar final results while saving a lot of computa-
tion time, for the five object data sets where the iterative
snapping has been originally used we have run our
algorithm again, but this time, with PSR software for the
mesh initialization. Fig. 18 shows the reconstructed models
and illustrates that noticeable differences (highlighted in
red) appear only at a few places compared to results in
Fig. 16, and the rest of the structure is almost identical.

5.4 Shortcomings and Limitations

As mentioned earlier, one difference between the proposed
method and many other MVS algorithms is that our method
lacks strong regularization at the core patch reconstruction
step, which helps in recovering complicated structure such
as deep concavities but may cause a problem where image
information is unreliable due to poor-texture surfaces or
sparse input images. However, our experimental results, in
particular quantitative evaluations on the Middlebury
benchmark, show that these are in fact data sets where
our approach significantly outperforms the others due to
the surface normal estimation at the sacrifice of additional
computation time. On the other end, because of the lack of
regularization, our patch generation step reconstructs 3D
points only where there is reliable texture information, and
postprocessing is necessary to fill-in possible holes and
obtain, for example, a complete mesh model. Another
limitation is that, like many other MVS algorithms, our
surface representation (i.e., a set of oriented points) and the
reconstruction procedure do not work well for narrow-
baseline cases, where the uncertainty of depth estimation is
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Fig. 14. The graph shows the number of reconstructed patches at each

step of the algorithm: after the initial feature matching, the expansion

procedure and each of the three filtering steps. Note that three iterations

of the expansion and the filtering have been performed.

Fig. 15. Visual hull models for some object data sets where foreground/
background segmentation information is available. See text for more
details.

11. In addition to multiview stereo, they also benchmark camera
calibration algorithms. See their Web site [36] for more details.



high and disparities instead of depth values are typically

estimated per image [38].

6 CONCLUSION AND FUTURE WORK

We have proposed a novel algorithm for calibrated multiview

stereo that outputs a dense set of patches covering the surface

of an object or a scene observed by multiple calibrated

photographs. The algorithm starts by detecting features in

each image, matches them across multiple images to form an
initial set of patches, and uses an expansion procedure to
obtain a denser set of patches before using visibility
constraints to filter away false matches. After converting the
resulting patch model into a mesh appropriate for image-
based modeling, an optional refinement algorithm can be
used to refine the mesh, and achieve even higher accuracy.
Our approach can handle a variety of data sets and allows
outliers or obstacles in the images. Furthermore, it does not
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Fig. 16. Final mesh models: From left to right and top to bottom: roman, temple, dino, skull, face-1, face-2, body, city-hall, wall, fountain, brussels,

steps-1, steps-2, steps-3, and castle data sets. Note that the mesh models are rendered from multiple view points for fountain and castle data sets to

show their overall structure.



require any assumption on the topology of an object or a scene
and does not need any initialization, such as a visual hull
model, a bounding box, or valid depth ranges that are
required in most other competing approaches, but can take
advantage of such information when available. Our approach
takes into account surface orientation in photometric
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Fig. 17. (a) Mesh models before the refinement. (b) and (c) Comparisons of reconstructed models before (left) and after (right) the refinement.

TABLE 2
Quantitative Evaluations Provided at [2]

For each data set and each algorithm, the table shows the accuracy (left) and the completeness (right) measures. The best result is highlighted in
red. Tables are reproduced from [2] (courtesy of D. Scharstein).

TABLE 3
Quantitative Evaluations for Two Scene Data Sets

Tables are reproduced from [35] (courtesy of C. Strecha).

TABLE 4
Running Time of the Three Algorithms in Our Approach [min],

and Numbers of Triangles in the Final Mesh Models



consistency computation, while most other approaches just
assume fronto-parallel surfaces. Quantitative evaluations
provided in [1] show that the proposed approach outper-
forms all of the other evaluated techniques both in terms of
accuracy and completeness for four out of the six data sets. The
implementation of the patch-based MVS algorithm (PMVS) is
publicly available in [25]. Our future work will be aimed at
better understanding the source of reconstruction errors and
obtain even higher accuracy. For example, one interesting
observation from Table 2 is that our results for the largest full
data sets are worse than those for the intermediate ring data
sets, which is in fact the case for some other algorithms.
Further investigation of this behavior is part of our future
work, together with the analysis of how parameter values
influence results. It would also be interesting to study
contributions of our mesh refinement step more quantita-
tively, which has mostly shown qualitative improvements in
our results. Another possible extension is to model lighting
and surface reflectance properties since MVS algorithms like
ours typically assume that an object or a scene is Lambertian
under constant illumination, which is of course not true in
practice. Improving the mesh initialization algorithm by
using a technique similar to [39] is also part of our future
work.
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