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Abstract

There is a growing body of work addressing the prob-
lem of localizing printed text regions occurring in natural
scenes, all of it focused on images in which the text to be
localized is resolved clearly enough to be read by OCR.
This paper introduces an alternative approach to text lo-
calization based on the fact that it is often useful to localize
text that is identi�able as text but too blurry or small to be
read, for two reasons. First, an image can be decimated
and processed at a coarser resolution than usual, resulting
in faster localization before OCR is performed (at full res-
olution, if needed). Second, in real-time applications such
as a cell phone app to �nd and read text, text may initially
be acquired from a lower-resolution video image in which it
appears too small to be read; once the text’s presence and
location have been established, a higher-resolution image
can be taken in order to resolve the text clearly enough to
read it.

We demonstrate proof of concept of this approach by de-
scribing a novel algorithm for binarizing the image and ex-
tracting candidate text features, called �blobs,� and group-
ing and classifying the blobs into text and non-text cate-
gories. Experimental results are shown on a variety of im-
ages in which the text is resolved too poorly to be clearly
read, but is still identi�able by our algorithm as text.

1. Introduction

OCR is a successful application of image processing and
computer vision to the problem of reading printed text that
is well resolved in good-quality images [7]. In such images,
the text regions comprise the majority of pixels, and there
is a minimum of non-text background clutter. A growing
body of work addresses the more challenging complemen-
tary problem of �nding and localizing text in natural im-
ages, which are dominated by clutter, so that the text regions
may be segmented out and input to OCR. Such functionality

is very useful for �nding and reading printed signs, such as
street, of�ce and other informational signs, as well as other
text in the environment. The text localization stage is neces-
sary since standard OCR techniques are ill-equipped to sort
through and discard the numerous non-text regions among
the background clutter.

A common thread among past work on text localization
is the assumption that any text to be detected is resolved
clearly enough in the image to be read by OCR: images in
this past work show individual text characters subtending
heights of many (i.e. usually 20 or more) pixels, and adja-
cent characters in words are separated by enough space that
they can be separately segmented.

However, we have found that this assumption may not be
appropriate for our application of �nding and reading text
for blind and visually impaired persons, which poses two
important challenges: the limited computational resources
available on the cell phone platform that we are using, and
the often poor visibility of text when seen from typical
viewing distances and imaged at VGA video resolution. To
meet these challenges, we devised a text localization algo-
rithm that detects text even when it is not resolved large or
clearly enough to be read.

Such an algorithm is useful for our application for two
reasons. First, an image can be decimated and processed at
a coarser resolution than usual, resulting in faster localiza-
tion before OCR is performed (at full resolution, if needed).
Second, in real-time applications such as a cell phone app
to �nd and read text, text may initially be acquired from a
lower-resolution video image in which it appears too small
to be read; once the text's presence and location have been
established, a higher-resolution image can be taken in order
to resolve the text clearly enough to read it.

We demonstrate proof of concept of this approach by de-
scribing a novel algorithm for binarizing the image and ex-
tracting candidate text features, called “blobs,” and group-
ing and classifying the blobs into text and non-text cate-
gories. Experimental results are shown on a variety of im-
ages in which the text is resolved too poorly to be clearly
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Algorithm 1 Blob Detection Algorithm
1. For each row, �nd an array of horizontal line segments,
indexed by row number (ALy).

2. At the end of Step 1, we get an array of line segment
arrays(ALA) representing the image.

3. Initiate a blob with one line,Lyi from �rst ALy of ALA,
and removeLyi fromALA.

4. Sweeping downward: for eachy where the blob has
any line segment, and for each line in the line array, search
ALy+1 in ALA for connected lines. If a line segment is
found, add it to the blob at(y+1), and remove it fromALA.

5. Sweeping upward: for eachy where the blob has any
line segment, and for each line in the line array, search
ALy−1 in ALA for connected lines. If a line segment is
found, add it to the blob at(y−1), and remove it fromALA.

6. Repeat steps 4 and 5 until no new line segment is added
for either step 4 or 5. Store the blob.

7. Repeat steps 3 - 6 untilALA is exhausted.

Figure 2. Example of Blobs extracted from an image
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Figure 3. Example of Blobs extracted from an image: zoomed in

where,dAi = sum ofith row

7. Y Moment Second (YMS) =
P

j

� P

i
(xc − xij)2�

dAj

where,dAi = sum ofjth column

8. X Moment Radius Gyration =XMS
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12. XMoment Two Per Area =XMT
BA

13. YMoment Two Per Area =Y MT
BA

14. Perimeter

15. Perimeter Sq Per Area =P erimeter2

BA

As part of the training, around 1200 blobs in 40 im-
ages are manually labelled as text and non-text. Figures
4 through 7 show the geometric properties of a randomly
chosen subset of labeled blobs. In these �gures, the x-axis
is just the blob index, and the y-axis shows the values (off-
set plus scaled) of the properties. In fact, the y-axis is in-
verted since Java considers y-axis as positive downwards
by default. The actual scale of the index itself is not im-
portant; the �gures just indicate the effectiveness of the ge-
ometric properties in distinguishing between text and non-
text blobs.

The blobs are divided in to two groups, ”long” and ”not
long” blobs, based on the aspect ratio. Blobs with aspect
ratio≤ 0.35 are treated as ”long”. Figure 8 shows the blobs
from an image in the increasing order of aspect ratio.

Using the training blobs, a histogram of each of these
properties is formed, separately for long and not long blobs,
one each from positive and negative examples. The posi-
tive blobs' histogram gives the probability of a blob being
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Figure 4. Basic properties of blobs (Blue = text, Red = non text)

Figure 5. Second moments of blobs (Blue = text, Red = non text)

text, and the negative blobs' histogram gives the probability
of a blob being not text. If a query blob is long, then the
histogram set learned from long blobs is used.

A query blob's unitary potential of being text is de�ned

as the ratio P ( ~f |T ext)
P ( ~f |NonT ext)

as given by the histograms, where

~f denotes the vector of all15 geometric properties for a
given blob. A product is taken of the histograms across all

Figure 6. Second moments of blobs (Blue = text, Red = non text)

Figure 7. Perimeter related properties of blobs (Blue = text, Red =
non text)

15 features, in a Naive Bayes fashion, i.e.

P (~f |Text) =
15Y

i=1

P (fi|Text)

P (~f |NonText) =
15Y

i=1

P (fi|NonText)

(1)

where P (fi|Text) and P (fi|NonText) come from the
trained histograms ofith feature. The query blob's unitary
potential of being not text is set to a constant 1.

Figure 9 shows the blobs from an image color coded
smoothly according to their potentials as obtained using
Equation 1. A darker shade of blue indicates a higher po-
tential of being text, and a darker shade of red indicates a



Figure 10. Before grouping: Color coded raw blobs

Figure 11. Post grouping: Color coded Superblobs

in it. We expect words to have more than one letter, hence
two or more “similar” blobs next to each other in the image
to have a high likelihood of being text as opposed to a single
isolated blob. Naturally, the higher the number of blobs in a
superblob, the smaller the threshold. Also, the overall area
ratio of the superblob is taken in to account while clasify-

ing. The overall area ratio of the superblob has to be larger
than a certain threshold for the superblob to be classi�ed as
text.

4. Experimental Results

The algorithm was tuned to �nd text with height between
5 and 14 pixels. It was tested on various pictures, some of
resolution 320 x 480 taken from an iPhone 3GS view�nder
(Figures 12 through 15), and some taken from an online
dataset, down-sampled to approximately 200 pixels wide
(�gures 16 through 18). For an image of size 320 x 480,
the current detection algorithm runs in around 100ms on a
standard iMac desktop computer. However, there have been
no attempts at optimizing the algorithm yet.

The algorithm searches for text in one polarity, i.e. light
text on a dark background. To �nd dark text on a light
background, the algorithm is run with the image contrast
reversed. Each of the results shown marks only light text
in the given image. Hence,dark text on light background
will not be marked, and not considered as missed posi-
tives. It can be seen from the results that the algorithm
performs really well when the text can be seen clearly and
the image has a good contrast, such as those in Figures 16
through 18. Even when the image does not have a good
contrast, the algorithm performs reasonably well. In Fig-
ures 19 through 21, zoomed in regions of our results are
shown. Note that the algorithm detects text even at a very
low resolution (height≤ 7), which may not be read even
by humans. These are low quality pictures taken from an
iPhone view�nder (320 x 480). Though, not every low res-
olution text region is detected, this shows the effectiveness
of the algorithm.

There are a few missed positives, most of which trace
back to the Naive Bayes histograms based approach. Also,
single letters are more likely to be missed in our algorithm
since the potential threshold on a single blob is really high.
With a better method to �nd the potential of a blob such as
Adaboost [2] and random trees [1], the missed positives can
be reduced. Also, more training data of different resolutions
can reduce missed positives. In some cases, the word is bro-
ken down in two or more pieces. This is due to variation in
the gap in between the letters or a very unclear letter in a
word. These kind of cases can be greatly reduced by reit-
erating the grouping of superblobs. Sometimes, part of the
word is seen missing such as the last letter ”S” in the word
”Sandwiches” in Figure 12. This is due to the fact the last
letter S is not aligned with the rest of the word as per our
stringent alignment criterion. If the criterion is relaxed, the
word will be detected in its entirety, however, it will lead to
more false positives. The false positives are only a concern
with regards to the runtime speed of the overall algorithm
(detection plus OCR recognition) and not with regards to
the accuracy, as the false positives will be eliminated when
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Figure 19. Example: detected low resolution text regions (zoomed
portion of Figure 12)

Figure 20. Example: detected low resolution text regions (zoomed
portion of Figure 13)

Figure 21. Example: detected low resolution text regions (zoomed
portion of Figure 15)

resolution stills to attempt to scrutinize it, when necessary.
We have demonstrated proof of concept of our approach on
a variety of images, acquired both from standard text image
datasets and from an iPhone at low resolution.

In the future, we plan to improve the algorithm to over-
come some of its current limitations, including the require-
ment that text be oriented horizontally, the non-negligible
incidence of false positives on text-like image regions con-
taining structures such as trees and textured walls, and the
fact that words are sometimes split into multiple pieces
in the detection process. These improvements may be
achieved by using better classi�ers than the naive Bayes
method we are currently using, including Adaboost [2] and
random trees [1], and enlarging the set of training data. Fi-
nally, once the algorithm has been improved we plan to port
it to the iPhone platform, and use it as the front end of a
system we are developing that will enable blind and visu-
ally impaired users to �nd and read printed text signs.
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