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Abstract- This work introduces a novel descriptor called 
Binary Robust Appearance and Normals Descriptor (BRAND), 
that efficiently combines appearance and geometric shape 
information from RGB-D images, and is largely invariant to 
rotation and scale transform. The proposed approach encodes 
point information as a binary string providing a descriptor 
that is suitable for applications that demand speed performance 
and low memory consumption. Results of several experiments 
demonstrate that as far as precision and robustness are con­
cerned, BRAND achieves improved results when compared to 
state of the art descriptors based on texture, geometry and 
combination of both information. We also demonstrate that 
our descriptor is robust and provides reliable results in a 
registration task even when a sparsely textured and poorly 
illuminated scene is used. 

I. INTRODUCTION 

At the heart of numerous tasks, both in robotics and 
computer vision, resides the crucial problem known as 
correspondence. Simply stated, the key challenge is to 
automatically determine for a given point in one image, a 
point in another image which is the projection of the same 
point in the scene. This is a challenging problem due to 
several issues, such as scene illumination, surface reflectance, 
occlusion and acquisition noise. 

Developing accurate three-dimensional models of scenes, 
Simultaneous Localization And Mapping (SLAM), tracking, 
and object recognition are representative examples of appli­
cations that build upon a correspondence foundational layer, 
of which a good descriptor is the cornerstone. 

In recent years, two-dimensional images have been used 
since they provide rich textural information, which allows 
the development of several feature descriptor approaches. 
Scale Invariant Feature Descriptor (SIFT) [1] and Speed Up 
Robust Descriptor (SURF) [2] are the most popular and 
representative methods of these approaches. Nonetheless, 
common issues concerning real scenes, such as variation 
in illumination and textureless objects, may dramatically 
decrease the performance of these descriptors. 

With the growing availability of inexpensive, real time 
depth sensors, depth images are becoming increasingly 
popular. As in the case of two-dimensional images, region 
matching on this type of data is most advantageous. Spin 
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Fig. I. Three-dimensional matching example for two scenes using BRAND 
descriptor. Mismatches are shown with red lines and correct matches with 
green lines. 

Images [3] is a classical example of a robust and rotation 
invariant geometric descriptor, successfully employed in 
applications such as object recognition [4]. However, due 
to the geometric nature of the data, such descriptors tend to 
present high complexity and large ambiguous regions may 
become a hinderance to the correspondence process. 

The combination of appearance (provided by two­
dimensional textured images), and geometric (produced by 
depth information) cues, has proven to be a very promising 
approach to improve the correspondence and recognition rates. 
Lai et al. [4] have already shown that the concatenation of 
two well-known descriptors for each type of data (SIFT and 
spin images) to form a new descriptor, outperforms learning 
from view-based distance using either appearance or depth 
alone. 

In this paper, we present a novel local RGB-D descriptor 
called BRAND, which efficiently combines intensity and 
geometric information to substantially improve discriminative 
power enabling enhanced and faster matching. Different 
from descriptors that use either appearance information or 
geometric information, our approach proposes to build a 
single descriptor which simultaneously takes into account 
both sources of information to create an unique description 
of a region. Figure 1 shows the correspondence of a set 
of keypoints in two 3D scenes achieved using BRAND. 
Experimental results show that BRAND is a robust and 
computationally efficient technique that outperforms state-of­
the-art techniques in accuracy, processing time and memory 
consumption. 
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II. RELATED WORK 

Computer vision literature presents numerous works on 

using different cues for correspondence based on textural 

information. SIFT [1] and SURF [2] are popular algorithms 

for keypoint detection and descriptor creation. They build 

their feature detectors and descriptors on local gradients 

and specific directions to achieve rotational invariance. More 

recently, several compact descriptors, such as [5], [6], [7], [8] 

have been proposed employing ideas similar to those used 

by Local Binary Patterns (LBP) [9]. These descriptors are 

computed using simple intensity difference tests, which have 

small memory consumption and modest processing time in 

creation and matching process. However, in virtually all of 

these approaches, features are extracted from images alone, 

and as consequence, they are more sensitive to variations 

in illumination and they are not able to handle images of 

textureless objects. 

If on one hand image texture information can usually 

provide better perception of object features, on the other hand 

depth information captured by 3D sensors is less sensitive to 

lighting conditions. Spin images descriptor [3] is an example 

of a successful descriptor extracted from 3D data. This 

approach creates a rotation invariant 2D representation of 

the surface patch hemming a 3D point. Other approaches 

proposed to handle unordered 3D point clouds are based on 

feature histograms [10], [11]. Even though these descriptors 

are accurate, they present high computational cost since the 

construction of a single descriptor for general raw point 

clouds or range images involves highly complex geometric 

operations. 

A promising idea for the design of descriptors that is 

becoming popular in the last few years is to consider 

multiple cues. Zaharescu et al. [12] proposed the MeshHOG 

descriptor using texture information of 3D models as scalar 

functions defined over a 2D manifolds. Tombari et al. [13] 

presented the Color-SHOT (CSHOT) descriptor based on 

an extension of their shape only descriptor Signature of 

Histograms of Orientations (SHOT) [14] to incorporate 

texture. CSHOT signatures are composed of two histograms, 

one contains the geometric features over the spherical support 

around the keypoint and the other contains the sum of the 

absolute differences between the RGB triples of the each 

of its neighboring points. The authors of [13] compared 

CSHOT against MeshHOG and reported that their approach 

outperformed in processing time and accuracy. In the case of 

global descriptor, Kanezaki et al. [15] presented the Voxelized 

Shape and Color Histograms (VOSCH) descriptor, which 

by combining depth and texture, was able to increase the 

recognition rate in cluttered scenes with obstruction. 

Considering the promising ideas employed in [15], [13], 

[12], our proposed local descriptor brings forth the advantages 

of using both appearance and depth information. However, 

differently from them, our approach spend little memory 

space and little processing time without losing accuracy. 

Fig. 2. Assembling diagram of BRAND descriptor. After computing the 
scale factor s using depth information from RGB-D image, our methodology 
extracts a patch of the image in the RGB domain to estimate the dominant 
direction () of the keypoint. Finally, appearance and geometric information 
are fused based on the features selected with a pattern analysis. 

III. METHODOLOGY 

In this section we detail the design of the BRAND 

descriptor. The stages performed to build this descriptor are 

illustrated in Figure 2 and will be described in detail in this 

section. 

Our methodology, which is composed of three main steps, 

receives a list of keypoints that can be detected by algorithms 

such as [1], [2], [16], [17], and returns a list of signature 

vectors. In the first step, we compute the scale factor using 

the depth information from RGB-D image. The scale factor 

is used in the next step (dominant direction estimation) 

and in the feature analysis in the keypoint's vicinity. In 

the dominant direction estimating step, a patch in the RGB 

domain is extracted and used to estimate the characteristic 

angular direction of the keypoint's neighborhood. At last, we 

combine both appearance and geometric information to create 

keypoints descriptors that are robust, fast and lightweight. 

The goal is to bring forth the best cues that each domain can 

provide, and combine them as efficiently and as inexpensively 

as possible, into one binary string. 

A. Scale and Orientation Assignment 

Due to the lack of depth information in the images, 

approaches such as [1], [2] and [18] use scale-space rep­

resentation to localize keypoints at different scales. In their 

approach, the image is represented by a multilevel, multiscale 

pyramid in which for each level the image is smoothed and 

sub-sampled. 

Since RGB-D images are composed of color as well as 

depth information, instead of computing a pyramid and 

representing the keypoints at the scale-space, we use the 

depth information of each keypoint to define the scale factor 

8 of the patch to be used in the neighborhood analysis. In 

this way, patches associated with keypoints farther from the 

camera will present smaller sizes. 

In order to compute the dominant orientation e for the 

keypoints, we employ the fast orientation estimator presented 

in [2]. The orientation assignment for each keypoint is 

achieved by computing the Haar wavelet responses in both 

x and y directions. Differently from [2], that uses the scale 

factor 8 at which the keypoint was detected to compute the 

radius (68) of the circular neighborhood around the keypoint, 

we use the keypoint depth acquired from the RGB-D data. 

This value is used to scale the size of wavelets (48) and to 
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Fig. 3. Patch p with 48 x 48 pixels indicating 256 sampled pairs of pixel 
locations used to construct the local binary pattern. 

determine the standard deviation (28) of a Gaussian function 
used to weight the wavelet. 

B. Appearance and Geometry Fusion 

There are several choices to compose a descriptor, and bit 
strings are among the best approaches, mainly due to the 
reduction in dimensionality and efficiency in computation 
achieved with their use. In addition, the similarity between 
two binary descriptors can be measured by the Hamming 
distance, which can be computed efficiently with a bitwise 
XOR operation and a bit count. 

Although our descriptor encodes point information as a 
binary string, like approaches described in [5], [18], [6], [7], 

we embed geometric cues into our descriptor to improve 
robustness to changes in illumination and the lack of texture 
in scenes. 

BRAND can be formally described as follows. Let the pair 
(I, D) denote the output of an RGB-D system where, I(x) 
and D(x) provide, respectively, color and depth information 
for a pixel x. For spatial points defined by the depth map D, 
we provide an estimation of their normal vectors as a map N, 
where N(x) is estimated efficiently by principal component 
analysis over a small neighborhood in the surface defined by 
the depth map. 

Our descriptor is constructed for a small image patch p, 

centered at a pixel k. We then use Pi (x) and Pn (x) to denote, 
respectively, the pixel intensity and surface normal for a pixel 
x E p. The first step to compute the set of descriptors 
of an RGB-D image (I, D) is the selection of a subset 
K of keypoints among image pixels. An efficient keypoint 
detector, such as [16] or [17] can be used to construct the 
set K. Indeed, we performed experiments with four different 
keypoint detectors: [1], [2], [16], [17], and our descriptor 
presents an average accuracy of 0.57 with standard deviation 
of 0.035. 

Given an image keypoint k E K, assume an image patch 
p of size S x S (in this work we consider 9 ::; S ::; 48) 
centered at k. Figure 3 illustrates the patch where the set of 
pixel pairs (Xi, Yi) E P are indicated with line segments. We 
use a pattern with locations given by an isotropic Gaussian 
distribution N(O, �8;) for selecting pixel pairs, inspired in 
the work of [5]. The variance of a = 2

1
5482 gives best results 

in terms of recognition rate, according to the experiments 

Binary Descriptor 

Fig. 4. Diagram of BRAND creation. The patch of size S x S is centered 
at the keypoint location. For sampled pair (x, y), in a patch p, we evaluate 
changes in the intensity and geometry. 

performed by Calonder et al. [5]. However, differently from 
that work, we remove all pairs with points outside of the 
circle with radius equals to 24. Hence, we guarantee that all 
pixels within the circle are preserved independent of patch 
rotation. We also pre-smooth the patch with a Gaussian kernel 
with a = 2 and a window with 9 x 9 pixels to decrease the 
sensitivity to noise and increase the stability in the pixels 
comparison. 

Let the set of sampled pairs from p be denoted by 
S = {(Xi,yi) ,i = 1, . . .  , 256}. In order to guarantee test 
consistency while searching for correspondences, the same set 
S is used to construct descriptors for all keypoints sampled 
from all images. 

The patch p is translated to the origin and then rotated and 
scaled by the transformation To,s, where e is the dominant 
direction and the scale factor 8 is computed by: 

= (0 2 
3.8 - 0.4 max(2, d)) 

8 max ., 
3 

' (1) 

which linearly scales the radius of circular patch p from 9 

to 48 and filter depths with values less than 2 meters. 
To construct our 256 bits feature descriptor we use, from 

the rotated and scaled patch p, the set: 

Then, we evaluate for each pair (Xi, Yi) E P the function: 

if (Pi(Xi) < Pi(Yi)) V T(Xi,Yi) 

otherwise, 
(3) 

where the first term captures the characteristic gradient 
changes in the keypoint neighborhood and T(.) function 
evaluates the geometric pattern on its surface. Figure 4 

illustrates the construction process of the bit string. 
The analysis of the geometric pattern using T ( .) is based 

on two invariant geometric measurements: i) the normal 
displacement and ii) the surface's convexity. While the normal 
displacement test is performed to check if the dot product 
between the normals Pn(Xi) and Pn(Yi) is smaller than a 
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Fig. 5. Example of ambiguity in the dot product. Despite the fact that the 
points Ps (x) and Ps (y) define a concave surface patch while Ps (y) and 
Ps(z) define a convex surface patch, the dot products (Pn(x),Pn(Y)) = 
(Pn(Y),Pn(z)). In such cases, the curvature signals ,",1 < 0 and ,",2 > 0 
are used to unambiguously characterize the patch shape. 

displacement threshold p, the convexity test is accomplished 

by the local curvature signal, "", estimated as: 

""(Xi, Yi) = (Ps(Xi) - Ps(Yi), Pn(Xi) - Pn(Yi)), (4) 

where (.) is the dot product and Ps (x) is the 3D spatial 

point associated to the pixel x and depth D(x). Figure 

5 illustrates an example where the dot product between 

surface normals is ambiguous, since 81 = 82, but different 

signed curvatures, ""1 < 0 and ""2 > 0, are used to 

unambiguously characterize these different shapes, besides 

capturing convexity as additional geometric features. 

The final geometric test is given by: 

Finally, the descriptor extracted from a patch p associated 

with a keypoint k is encoded as a binary string computed by: 

256 
b(k) = L 2i-1 f(Xi, Yi). (6) 

i=l 

In order to show that our descriptor is based on invariant 

measures, we recall that it combines appearance and geometry. 

Appearance is an object property invariant to any geometric 

transformation, although its projection on an image may 

vary with illumination and other conditions. The geometric 

component of our descriptor is based on the relation between 

the normal displacement and the surface convexity, which 

are geometric measurements invariant to rotation, translation 

and scaling. 

IV. EXPERIMENTS 

For evaluation purposes, we perform a set of tests to 

analyze the behavior of the BRAND descriptor for the 

matching tasks. Comparisons are performed with the standard 

approaches of two-dimensional images descriptor, SIFT [1] 

and SURF [2], with the geometric descriptor, spin-images [3], 

and the state-of-the-art in fusing both texture and shape 

information CSHOT [13]. 

For the experiments, we use the dataset presented in [19]. 

This dataset is publicly availablel and contains several 

real world sequences of RGB-D data captured with a 

Kinect™sensor. Each sequence in the dataset provides the 

ground truth of the camera pose estimated by a MoCap 

I https;llcvpr.in.tum.de/dataidatasets/rgbd-dataset 
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Fig. 6. (a) Angular threshold for dot product test. On the average, the best 
choice is use 45 degrees. (b) The best binary operator to be used for fuse 
appearance and geometric was the OR operator. 

system. We selected four sequences in the dataset to use 

in our experiments: i) freiburg2...xyz, in which the Kinect is 

moving individually along the xJy/z axes; ii) freiburg2Jpy 

with Kinect rotated individually around the three axes; 

iii) the handheld slam sequence freiburgLdesk; and iv) 

freiburg2-pionner_slam2 with a Kinect mounted on top of a 

Pioneer robot. 

To evaluate the performance of our descriptor and compare 

to other approaches, we use the criterion presented in [20]. 

We match all pairs of keypoints from two different images. 

If the Euclidean (for SURF and SIFT), Correlation (for spin­

image) or Hamming (for BRAND) distance between the 

descriptors falls below a threshold t, a pair is termed as a 

valid match. Therefore, we plot the recall versus I-precision 

values, obtained by changing the values of t. Recall is the 

number of correctly matched keypoints and I-Precision is 

the number of false matches relative to the total number of 

matches. 

For each sequence, given an RGB-D image of frame i, 

we compute a set of keypoints Ki using the STAR detector2. 

To make a fair comparison among all descriptors' approach, 

the depth information was not used to detect keypoints. All 

keypoints k E Ki are transformed to frame i + � creating 

the second set KHb", using as the ground truth pose those 

frames (Xi and Xi+a). We compute a descriptor for each 

keypoint in both sets and then perform the match. 

In the following sections, we evaluate several aspects of 

the proposed descriptor and show comparisons with other 

methods regarding computation time, memory consumption 

and accuracy. 

A. Parameter Settings 

Experimentally, we found that a threshold p that corre­

sponds to 45 degrees for the maximum angular displacement 

of normals results in a larger number of inliers (Figure 6 (a)). 

The plot shown in Figure 7(a) depicts the accuracy versus 

the number of bytes used for the BRAND descriptor. The 

results show that the accuracy for 32 bytes is similar to 

the accuracy for 64 bytes. Therefore, to obtain a more 

compact representation, we have chosen to use 32 bytes 

in the experiments. 

2STAR detector is an implementation of Center Surrounded Extrema [16] 
in OpenCY 2.3. 
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(a) (b) 

Fig. 7. (a) Different sizes for the BRAND descriptor; (b) Accurate 
versus Fast normal estimation. Even with the less precise normal estimation, 
BRAND have high accuracy in the keypoints correspondences. 

We chose a bit operator to combine appearance with 

geometry to maintain the simplicity and computational 

efficiency of the descriptor. To fuse these information, we 

evaluated different operators, such as X 0 R, AND and OR. 
Figure 6 (a) shows that fusing both texture and geometrical 

information with OR operator provides a signature with 

highest discriminative power. Even when compared with 

concatenation operator. The use of information from two 

differents domains has disadvantage of being exposed to two 

different sources of noise. However, using a binary operator 

rather than concatenation our descriptors are able to balance 

noise in one domain using other kinds of information. 

One problem that arises when using the binary operator 

OR to set the bits of the descriptors is ambiguity. In general, 

it may not be known if a bit was set to 1 due to variation in 

the normal or in intensity. Let Dl and D2 be two descriptors 

with only one bit, and an uniform distribution of the pairs. 

The following four cases can be listed: 

• Dl = 0, D2 = 0: Descriptors are equal, since there is 

neither normal nor intensity variation reported in both; 

• Dl = 0, D2 = 1: Descriptors are different, since there 

is no variation reported by D1, but D2 reports some 

variation (either normal or intensity); 

• Dl = 1, D2 = 0: Descriptors are different, since there is 

no variation reported D2, but Dl reports some variation 

(either normal or intensity); 

• Dl = 1, D2 = 1: Descriptors are equal, since they both 

report some variation. 

In all four cases above, the variation source cannot be 

known. In the first three cases, the source of variation does 

not matter, because only one descriptor reports some variation. 

However, in the last case, both descriptors reports some 

variation and, if the variation sources were different, the 

descriptors should not be equal. Hence Dl = D2 = 1 is an 

ambiguous case that may happen. 

Table I shows all nine cases that can produce Dl = 1 and 

D2 = 1. In only two of these nine cases the bit was incorrectly 

set (descriptors Dl and D2 should be considered as different 

but for this analysis they will be considered as being equal): 
This occurs when there are changes in the direction of normal 

but there are no changes in intensity on the surface that 

generated descriptor D1, and the surface that produced D2 
does not have variation in the direction of normals, but has 

changes in intensities. Thus, the probability of comparing 

TABLE I 

THIS TABLE SHOWS ALL NINE CASES THAT CAN PRODUCE Dl = 1 AND 

D2 = l. FOR ALL THESE CASES ONLY TWO CAN BE AMBIGUOUS 

(COLUMNS 2 AND 4 WITH BITS IN BOLDFACE) . CHANGES IN NORMAL OR 

INTENSITY ARE REPRESENTED WITH BIT EQUAL TO l. 

ambiguous bits can be estimated as i x � ;:::; 5.5%. In practice, 

the ambiguity is yet smaller. We computed for 420 keypoints 

in 300 pairs of images the number of ambiguities and we 

found the rate to be close to 0.7%. 

B. Rotation Invariance 

We also evaluated the descriptor's invariance to rotation. 

We use synthetic in-plane rotation and added Gaussian noise 

with standard deviation equal to 15 degrees (Figure 9 (a». 

After applying the rotation and adding noise, we computed 

the keypoint descriptors using BRAND and SURF, and then 

performed a brute-force matching to find correspondences. 

Figure 9 (b) shows the results for the synthetic test for 

noise with standard deviation of 15,30,45,60 and 75. The 

results are given in terms of percentage of inliers as a function 

of the rotation degree. Notice that BRAND is more stable 

and outperforms SURF in all scenarios. 

C. Normal Computation 

All geometric descriptors used for comparison in the 

experiments require that point clouds have normals. There are 

several methods to estimate normals from a point cloud. An 

accurate approach consists in estimating the surface normal by 

Principal Component Analysis (PCA) on the nearest neighbors 

of the keypoint [21]. This was the method used to estimate the 

normals in all match experiments. However, a less accurate, 

but faster approach, is to use the pixel neighborhoods defined 

by the structure from RGB-D images [22]. Figure 7 (b) 

shows the matching accuracy and the time spent by BRAND 

I -BRAND -sURF I 

Degree Degree 

(a) (b) 

Fig. 9. Percentage of inliers as a function of rotation degree. (a) BRAND 
and SURF matching performance under synthetic rotations with Gaussian 
noise of standard deviation of 15; (b) BRAND and SURF matching sensitivity 
under 0, 15, 30, 45, 60 and 75 levels of noise. BRAND is virtually unaffected. 
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Fig. 8. Precision-Recall curves for (a) freiburg2-xyz, (b) freiburg2Jpy, (c) freiburg2_desk and (d) freiburg2_pionneLSlam2. The keypoints were detected 
using STAR detector. BRAND outperforms all others approaches, including CSHOT, which combines, like BRAND, texture and geometric information. 

using both estimating techniques. We can see that, even with 

a less precise normal estimation, BRAND presents higher 

accuracy in the correspondences. Therefore, BRAND can 

be optimized if necessary for a given application without 

penalizing significantly its accuracy. 

D. Comparisons 

We have recorded the creation and matching time. The 

experiments were executed in an Intel Core i5 2.53GHz (using 

only one core) running Ubuntu 11.04 (64 bit). The values 

were averaged over 300 runs and all keypoints were detected 

by the STAR detector. We clearly see in Figure lO(a) that 

(a) (b) 

Fig. 10. Comparison between descriptors using: (a) processing time to 
create a keypoint descriptor and (b) the memory consumption in kbytes of 
each descriptor. 

BRAND is faster than the other descriptors in the creation 

step, losing only for SURF. Addionally, BRAND presents 

the lowest memory consumption with 32 bytes for keypoint 

descriptors, while CSHOT, like BRAND, which combines 

appearance and geometry, has descriptors of 5.25 kBytes in 

size (Figure lO(b )). 

Figure 8 shows the results of the threshold-based simi­

larity matching tests. As illustrated in the precision-recall 

curves, the BRAND descriptor showed a significantly better 

performance than all other approaches in all sequences. Even 

for the two more challenging sequences, freiburg2_desk and 

freiburg2-pionner ...slam2, which have high camera speed, 

and also in the particular case of freiburg2 -pionner ...slam2 

sequence, with few (which was acquired with the robot 

joysticked through a textureless large hall). 

E. Alignment Quality 

We also examined the performance of our descriptor on the 

registration task. Usually, a registration algorithm is divided 

in two main steps: coarse and fine alignment. We use BRAND 

descriptor in the coarse alignment to compute an initial 

estimation of the rigid motion between two clouds of 3D 

points using correspondences. In the fine alignment, we use 

Iterative Closest Point (ICP) algorithm to find a local optimum 

solution based on the prior coarse alignment with BRAND. 
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Fig. 11. Registration of a partially illuminated lab. The frames were used with images from a scene ranging from well illuminated to complete darkness. 
As BRAND contains geometric information, it is possible to match even if the scene is under inadequate illumination. 

The tests were performed in a room with poor lighting 

to show that we can register the clouds even with sparsely 

illuminated environments since the BRAND descriptor also 

contain geometric information. Due to the lack of RGB infor­

mation in the regions without illumination, we implemented 

an alignment algorithm which uses the geometrical keypoint 

detector NARF [23] whenever the number of STAR keypoints 

is below a threshold. We have acquired several frames 

from our lab with regions ranging from well illuminated to 

completely dark. The final alignment is shown in Figure 1l. 

This result makes it clear that, even for some regions without 

illumination, it was possible to successfully accomplished 

alignment of the point clouds. 

V. CONCLUSIONS 

We proposed a new descriptor named BRAND. This 

descriptor takes into account appearance and geometry from 

RGB-D images, presenting orientation invariance and robust­

ness to different illumination conditions. In our experiments, 

BRAND outperformed all the other descriptors, including 

the state of the art CSHOT descriptor, which also fuses 

appearance and geometry. Experiments demonstrate that our 

technique is robust for registration tasks under poor lightning 

and sparsely textured scenes. 

The results presented here extend the conclusion of [4], 

[13], [24] where the arrangement of appearance and geometric 

information is advantageous not only in perception tasks, but 

also useful to improve the quality of the correspondence 

process. Appearance and geometry information indeed enable 

better performance than using either information alone. 

The main constraint of our methodology are the bumpy 

surfaces. Since the geometrical features are extracted using a 

threshold for the displacement between normals, the small 

regularities of these surfaces can be confused with noise. 
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