
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015 359

SuBSENSE: A Universal Change Detection Method
With Local Adaptive Sensitivity

Pierre-Luc St-Charles, Student Member, IEEE, Guillaume-Alexandre Bilodeau, Member, IEEE,
and Robert Bergevin, Member, IEEE

Abstract— Foreground/background segmentation via change
detection in video sequences is often used as a stepping stone in
high-level analytics and applications. Despite the wide variety
of methods that have been proposed for this problem, none has
been able to fully address the complex nature of dynamic scenes
in real surveillance tasks. In this paper, we present a universal
pixel-level segmentation method that relies on spatiotemporal
binary features as well as color information to detect changes.
This allows camouflaged foreground objects to be detected
more easily while most illumination variations are ignored.
Besides, instead of using manually set, frame-wide constants to
dictate model sensitivity and adaptation speed, we use pixel-level
feedback loops to dynamically adjust our method’s internal
parameters without user intervention. These adjustments are
based on the continuous monitoring of model fidelity and local
segmentation noise levels. This new approach enables us to
outperform all 32 previously tested state-of-the-art methods on
the 2012 and 2014 versions of the ChangeDetection.net dataset
in terms of overall F-Measure. The use of local binary image
descriptors for pixel-level modeling also facilitates high-speed
parallel implementations: our own version, which used no
low-level or architecture-specific instruction, reached real-time
processing speed on a midlevel desktop CPU. A complete C++
implementation based on OpenCV is available online.

Index Terms— Background subtraction, change detection,
foreground segmentation, surveillance, spatiotemporal features,
video signal processing.

I. INTRODUCTION

THE use of change detection algorithms to identify regions
of interest in video sequences has long been a stepping

stone in high level surveillance applications. In their simplest
form, they allow the subtraction of static background from
scenes where relevant objects are always in motion. In most
cases however, “foreground” objects may move intermittently

Manuscript received July 17, 2014; revised September 18, 2014; accepted
November 18, 2014. Date of publication December 4, 2014; date of
current version December 22, 2014. This work was supported in part by
the Fonds de Recherche du Québec—Nature et Technologies (FRQNT) under
Grant 2014-PR-172083 and in part by the Regroupement pour l’étude des
environnements partagés intelligents répartis FRQ-NT strategic cluster. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Amit K. Roy Chowdhury.

P.-L. St-Charles and G.-A. Bilodeau are with the Laboratoire
d’Interprétation et de Traitement d’Images et Vidéo, École Polytechnique
de Montréal, Montréal, QC H3T 1J4, Canada (e-mail: pierre-luc.st-charles@
polymtl.ca; gabilodeau@polymtl.ca).

R. Bergevin is with the Laboratoire de Vision et Systèmes
Numériques, Université Laval, Québec, QC G1V 0A6, Canada (e-mail:
robert.bergevin@gel.ulaval.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2014.2378053

(e.g. cars at a traffic light), they may not be focal points
in a camera’s field of view, and uninteresting background
regions may also exhibit dynamic behavior (e.g. swaying tree
branches, water fountains). Simplistic background subtraction
methods and traditional image segmentation approaches are
thus ill-suited for active region labeling in real video surveil-
lance tasks. Modern change detection algorithms are generally
split into three parts: first, a background model of the scene
is created and periodically updated by analyzing frames from
the video sequence. Then, preliminary foreground/background
segmentation labels (or probabilities) are assigned to all pixels
of every new frame based on their similarity to the model.
Finally, regularization is used to combine information from
neighboring pixels and to make sure uniform regions are
assigned homogeneous labels.

Background modeling can be approached in many different
ways: to allow high-speed implementations, most methods rely
on independent pixel-level models which are assembled into a
larger background model. Color intensities are typically used
to characterize local pixel representations in non-parametric
models or for local distribution estimation in parametric
models. Due to its simplicity, this kind of approach cannot
directly account for spatiotemporal coherence between pixels
and instead delegates this responsibility to the regularization
step. This often culminates in less-than-ideal segmentation
results due to the absence of texture analysis, especially when
camouflaged foreground objects are involved.

Because this is a two-class segmentation problem and
because of the wide range of possible scenarios, parameters
that control model sensitivity and adaptation rate are usually
left to the user to define. These can be very difficult to adjust
for particular problems, especially when illumination varia-
tions, dynamic background elements and camouflaged objects
are all present in a scene at the same time. Additionally, good
knowledge of the data and of the change detection algorithm
itself is required to achieve optimal performance in any given
situation. Previously, most methods have used global thresh-
olds under the assumption that all observations would show
similar behavior throughout the analyzed sequences, which is
rarely the case. While it is possible to dynamically adjust such
parameters based on comparisons between observations and
values predicted by the model, this approach cannot be used
continuously due to disparities caused by foreground objects.
In all cases, a typical outcome of bad parameterization is seg-
mentation noise: usually observed under the form of “blinking
pixels” (i.e. pixels that often switch between foreground and

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

360 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

background classification over time), such noise indicates that
the model is too sensitive to change in a certain region.

In this paper, we present a universal method for change
detection, meaning it can be directly applied on most
video surveillance scenarios and still result in near-optimal
performance. Our work has already been partially described
in [1] and [2]; here, we give new and more detailed explana-
tions on the different parts of our method while providing
in-depth analyses of new results. In short, we first use an
improved spatiotemporal binary similarity descriptors along
with color intensities to characterize pixel representations in
a nonparametric paradigm. This novel approach allows the
detection of subtle local changes caused by camouflaged
foreground objects, which are not typically visible at the
pixel level. It also ignores disturbances caused by soft shad-
ows and other types of illumination variations or noise.
Pixel representations are captured and stored as “samples” in
pixel-level models, which as a whole form our background
model. Due to the conservative update strategy and neighbor-
spread rules used to update these samples, our model is
resistant to shaking cameras and intermittent object motion.

Then, in order to improve out-of-the-box flexibility in
complex scenarios, we propose a new feedback scheme to
dynamically control our algorithm’s sensitivity and adaptation
speed. This component is based on the continuous analysis of
background dynamics at the pixel level: it treats frame regions
differently based on recent observations, their similarity to
pixel models as well as local segmentation noise levels.
While segmentation noise is often seen as detrimental in
foreground/background labeling tasks, we show that it can be
used to guide feedback when it is managed correctly, thus
solving the dynamic adjustment problem in the presence of
foreground objects. In our case, the highly sensitive nature of
our pixel representations allows sparse noise to be generated
very easily, also improving the efficiency of our approach.
Ultimately, our feedback scheme can identify complex motion
patterns and adjust our model’s parameters locally without
compromising segmentation performance elsewhere.

To keep our method’s complexity minimal and its imple-
mentation simple, we avoid using preprocessing and color
conversion/normalization on analyzed frames. Furthermore,
our segmentation decisions do not rely on pixel-wise prob-
abilities or on an energy function, and require no region-level
or object-level processing. Our regularization step is also
simplified to morphological operations and median blurring,
which are able to eliminate all salt-and-pepper segmentation
noise. A complete evaluation on the 2012 and 2014 versions
of the ChangeDetection.net (CDnet) dataset [3], [4] shows that
we outperform all 32 previously ranked methods in terms of
overall F-Measure, as well as in nine out of eleven categories
(including baseline). These methods include ViBe [5] and
ViBe+ [6], which use a similar sample-based background
model that only relies on color, and PBAS [7], which uses
a feedback scheme that does not monitor segmentation noise
for its adjustments. In the end, our results demonstrate that
our approach is suitable for most complex change detection
challenges, but also that good generalization is not earned
at the expense of performance in simple scenarios. The full

C++ implementations of our method’s two stages presented
in Section III (i.e. with and without feedback) are available
online.1

II. RELATED WORK

Most methods used for change detection in video sequences
are based on the idea that, when using stationary cameras,
disparities between an analyzed frame and a background
reference are usually indicative of foreground objects. The
advantage behind this concept is that no prior knowledge
is required to detect the objects, as long as their appear-
ance differs enough from the background (i.e. they are not
camouflaged). As opposed to solutions based on object
detection, this approach can accurately describe the contour of
moving objects instead of simply returning their bounding box.
However, finding a good reference image in order to do actual
“background subtraction” is almost always impossible due to
the dynamic nature of real-world scenes.

Instead of relying on an existing reference image for
change detection, the earliest adaptive methods used pixel-wise
intensity averages and Kalman filtering to create parametric
background models from which comparisons are made. This
kind of approach is robust to noise and can slowly adapt
to global illumination variations, but is generally inade-
quate against shadows and multimodal background regions.
Gaussian Mixture Models (GMM) [8], [9] were introduced
to solve the latter problem and remain to this day a very
popular solution. They allow dynamic background elements
to be modeled through color intensities at individual pixel
locations using a mixture of Gaussian probability density
functions. New adaptive and more flexible variations of GMM
were also proposed over the years [10]–[13] to allow dynamic
numbers of components for modeling as well as to improve
their convergence rate.

Nonparametric models based on Kernel Density Estima-
tion (KDE) [14] were also introduced early on and improved
in more recent state-of-the-art methods [11], [15], [16]. Unlike
parametric models, these rely directly on local intensity
observations to estimate background probability density func-
tions at individual pixel locations. Most of them however
only incorporate observations on a first-in, first-out basis,
and are thus unable to model both long-term and short-term
periodic events without holding on to large amounts of data.
The stochastic sampling approach presented in [5] and [17]
and improved in [6] and [7] solves this problem by using
a random observation replacement policy in its model. Note
that our own approach is derived from it. The codebook
methods of [18] and [19] present another alternative to solve
this problem: they cluster observations into codewords and
store them in local dictionaries, allowing for a wider range of
representations to be kept in the background model. Kim et al.
also proposed in [18] a normalized color distance measure
that quickly gained popularity in change detection due to its
relatively low cost and robustness to illumination variations.
Non-parametric models are also often considered for hard-
ware [5] or high-speed parallel implementations due to their

1Available at https://bitbucket.org/pierre_luc_st_charles.

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 361

data-driven nature. For example, the method of [20], which
relies on pixel-level template matching, reported on the CDnet
website exceeding 800 frames per second while processing
320 × 240 videos using a single mid-level GPU (GTX 460).

Unprecedented methods based on artificial neural net-
works [21], [22] have been proposed and achieve good
results on various change detection scenarios without prior
knowledge of the involved motion patterns. However, they
require a training period of variable length depending on the
presence of foreground objects in the early frames of the
video sequences. To address this problem, weightless neural
networks based on binary nodes were instead used for online
learning in [23]. Other works have also focused on improving
foreground/background label coherence using advanced regu-
larization techniques based on connected components [6], [24],
superpixels and Markov Random Fields [25], or even static/
abandoned object detection [24], [26]. Some methods instead
rely on region-level [27], frame-level [28], [29] or hybrid
frame/region-level [30], [31] comparisons to explicitly model
the spatial dependencies of neighboring pixels. The recently
proposed method of Wang et al. [32] also relies on a hybrid,
multi-level system: it combines flux tensor-based motion
detection and classification results from a Split Gaussian
Mixture Model (SGMM), and uses object-level processing
to differentiate immobilized foreground objects from “ghost”
artifacts.

The use of local binary descriptors to improve the spatial
awareness of change detection methods has also been studied:
Heikkilä and Pietikäinen were the first to propose a solution
based on Local Binary Patterns (LBP) [33]. Their method
was demonstrated to be tolerant to illumination variations
and robust against multimodal background regions. This
robustness is achieved using LBP histograms at the pixel
level, but at the expense of sensitivity to subtle local texture
changes. An improved version of this method was proposed
by Zhang et al. in [34]: by computing LBP feature histograms
on consecutive frames and then merging them, they benefit
from using underexploited temporal motion information.
Another approach was suggested in [35] that does not require
histograms: Scale-Invariant Local Ternary Patterns (SILTP)
can be used directly at the pixel level to detect local changes
when incorporated in a modified KDE framework. Finally,
Local Binary Similarity Patterns (LBSP) were demonstrated
in [36] to surpass traditional color comparisons when used
to detect subtle changes in baseline scenarios via Hamming
distance thresholding. We chose to improve upon LBSP
features for our complete method due to their simplicity and
effectiveness in change detection (detailed in Section III-A).
We also chose not to use histograms in our model, and instead
we directly incorporate LBSP descriptors in a simplified
density estimation framework based on a step kernel (like the
one used in [5]).

As for the use of feedback mechanisms to adjust parameters
on-the-fly in this context, many parametric methods
(such as [9]–[11]) already used local variance analysis or
comparison results to guide segmentation behavior. Moreover,
post-processing components are sometimes used to trigger
model update mechanisms (like in the case of static object

Fig. 1. Block diagram of SuBSENSE; dotted lines indicate feedback
relations. The role of each block and variable is detailed in sections III-A
through III-D. In our case, post-processing used to generate the output
segmentation maps from raw labeling data is based on typical median filtering
and blob smoothing operations. This component is an integral part of our
method since it provides segmentation noise levels to our feedback process.

detectors [24], [26] or frame-level components [30]). However,
feedback is rarely used solely at the pixel level to control both
change detection sensitivity and model update rate. A notable
exception is the Pixel-Based Adaptive Segmenter (PBAS) [7],
which exploits “background dynamics” (i.e. the study of
background motion patterns and model fidelity) to control
local decision thresholds and update rates. In Section III-C, we
improve upon their design by allowing continuous background
monitoring and by restraining parameter adjustments to
regions with unstable segmentation behavior. These regions
are identified through the detection of blinking pixels, which
were also used heuristically in [6] to guide model updates.

For more information on foreground/background segmenta-
tion via change detection, note that many review papers and
surveys [37]–[41] have been published over the years on the
subject.

III. METHODOLOGY

As stated in the previous section, our proposed approach
is based on the adaptation and integration of Local Binary
Similarity Pattern (LBSP) features in a nonparametric back-
ground model that is then automatically tuned using pixel-level
feedback loops. We coined our complete method SuBSENSE,
short for “Self-Balanced SENsitivity SEgmenter”. We detail
how it works in three steps: first, we show in Section III-A
how individual pixels are characterized using spatiotemporal
information based on RGB values and LBSP features; then,
we present in Section III-B how these representations can be
gathered, updated and used in a stochastic, sample-based
model, resulting in a fairly simple and effective change detec-
tion method; finally, we show in Section III-C how model
fidelity and segmentation noise monitoring drives the feedback
scheme we used to control our algorithm’s sensitivity and
adaptation speed locally. Extra implementation details about
our method and its frame-level analysis component are given
in Section III-D.

An overview of SuBSENSE’s architecture is presented
in Fig. 1 based on a block diagram.

A. Pixel-Level Modeling

Pixel-level modeling, as opposed to region-level or
object-level modeling, usually allows high-speed parallel
implementations to be developed with relative ease due

362 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

Fig. 2. Simplified description and comparison of LBSP features using frames
picked from the copyMachine sequence of CDnet. In row (a), an intra-LBSP
feature is computed to serve as the basis for other comparisons; in rows
(b) and (c), inter-LBSP features are computed using (a)’s reference intensity
(the green x), while soft shadow and foreground are respectively visible. Row
(b)’s feature can be matched with (a)’s since textures are similar and the
relative intensity threshold is correctly scaled in bright-to-dark transitions;
this is not the case in row (c). Note that in fact, LBSP features are computed
and compared on each color channel.

to how the workload is already split and kept isolated at
a low level. However, the absence of information sharing
between such local models puts the entire burden of spatial
(or spatiotemporal) labeling coherence on the method’s
regularization scheme. To counter this, we characterize
pixel-level representations using not only their RGB values,
but Local Binary Similarity Pattern (LBSP) features, which
operate in the spatiotemporal domain. This approach improves
the odds of detecting camouflaged objects when their texture
differs from the background’s, and can even tolerate
illumination changes when all local color intensities vary
equally over time. Moreover, these features have a very low
computational cost, and are discriminative enough to be used
directly in pixel models without relying on local histograms.

As described in [36] and shown in Fig. 2, LBSP features are
computed on a predefined 5×5 grid. They can be considered a
counterpart to Local Binary Pattern (LBP) and Local Ternary
Pattern (LTP) features: instead of assigning binary codes based
on whether a given adjoining intensity is lesser or greater than
the central reference, they assign them based on similarity
(via absolute difference thresholding). More specifically, the
following equation is used to compute an LBSP binary string
centered at a given location x :

L BS P(x) =
P−1∑

p=0

d(i p , ix) · 2p (1)

with

d(i p , ix) =
{

1 if |i p − ix | ≤ Td

0 otherwise,
(2)

where ix is the “central reference” and corresponds to the
intensity of the pixel at x , i p corresponds to the intensity of
the pth neighbor of x on the predefined pattern, and Td is the
internal similarity threshold. In short, LBSP features require
the same number of internal operations per comparison as
LBP and fewer than LTP, but are more discriminative in
the context of change detection (see the experimental results
of Section IV-A). Furthermore, the pattern seen in Fig. 2 covers
more pixels than the basic version of LBP or LTP (typically
the 8-connected neighbors) without having to interpolate
intensity values. LBSP features can also be made sensitive
to spatiotemporal variations by picking a central reference
intensity (ix) from a previous frame. This is called inter-LBSP
by the original authors, in opposition to intra-LBSP when
computations are kept within a single frame. Examples of
inter-LBSP computations are also presented in Fig. 2.

The first major improvement we propose to traditional LBSP
features is related to their internal threshold, Td . As dis-
cussed in [35], the replacement of a similar threshold used
in LTP by a term that is relative to the reference intensity
(ix) makes the binary descriptors much more resistant to
illumination variations. In our case, due to the nature of inter-
LBSP features, this modification becomes even more effective
against shadows, as presented in the middle row of Fig. 2.
Simply put, since we always use a reference intensity from
a previous frame (Fig. 2.a, the green X mark) to compute
inter-LBSP descriptors (Fig. 2.b and c), and since shadows
are always characterized by bright-to-dark color transitions,
the similarity threshold will remain high and local pixels
are likely to stay classified as background. However, in the
case of dark-to-bright transitions (which are less likely to be
shadows, and more likely to be relevant changes), the simi-
larity threshold will remain low, thus avoiding possible false
background classifications. In short, to apply this modification
to LBSP features, we only need to replace (2) by the following
equation, where Tr is the new relative internal threshold
(bound to [0,1]):

d(i p , ix) =
{

1 if |i p − ix | ≤ Tr · ix

0 otherwise
(3)

We determined experimentally that using Tr ≈ 0.3 resulted
in noise-free, discriminative descriptors in nearly all tested
video sequences. However, for optimal flexibility in our final
method, this value was automatically scaled over time based
on the texture content of the analyzed scenes so that all
videos would bear approximately the same overall gradient
magnitude sums. That way, scenes with very little background
texture or few object edges would rely on much lower Tr

values than scenes with cluttered backgrounds, making the
former much more sensitive to local texture variations than
the latter. We measure the gradient magnitude of individual
frames by summing the Hamming weights (rescaled to [0, 1])
of all its intra-LBSP descriptors. We then slowly adjust Tr

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 363

Fig. 3. Examples of gradient magnitude maps obtained in different CDnet
sequences by computing the Hamming weight of dense intra-LBSP descriptors
with Tr = 0.3 (central column) and an automatically set Tr (right-hand
column); bright areas indicate highly textured regions and sharp edges, while
dark areas indicate flat regions. (a) Highway #0826. (b) Blizzard #0182.
(c) Fall #0289.

if this measure is too low or too high (i.e. outside a pre-
determined interval). In Fig. 3, we can see that the highway
sequence of CDnet (a) is not affected by these automatic
adjustments, as it presents a good balance between cluttered
and flat regions. On the other hand, the mostly texture-less
blizzard sequence (b) automatically settles for Tr ≈ 0.1,
which accentuates foreground object contours, and the fall
sequence causes Tr to increase above 0.3, reducing potential
segmentation noise induced by noisy texture patterns in trees.

In summary, for our nonparametric pixel models, we
define a single background pixel representation (or “sample”,
as referred to in the following sections) in RGB space as a
combination of color intensities (8-bit values) and intra-LBSP
binary strings (16-bit vectors). We do not convert RGB values
to a format with normalized brightness as we determined
that the extra computational cost was not worth the improved
resistance to illumination variations, to which LBSP features
already provide ample flexibility. When trying to match a
background sample to an actual observation on a given frame,
we first compare color values using L1 distance. If a match
is still possible after thresholding, we generate inter-LBSP
binary strings using the color values of the sample as reference
and using the 5 × 5 comparison grid on the current input
frame. Then, inter-LBSP and intra-LBSP strings (see Fig. 2)
are compared via Hamming distance thresholding. Therefore,
to consider a background sample similar to a local observation,
both color values and binary descriptors must be successfully
matched. In contrast to a purely color-based approach, this
two-step verification is inclined to reject more matches, thus
to classify more pixels as foreground (and therefore generate
more segmentation noise, as desired).

In the next section, we show how this kind of pixel-level
modeling can be used in a basic sample consensus framework

to achieve good change detection performance. Note that we
tested our pixel models using different local binary descriptors
and we present our results in Section IV-A.

B. Change Detection via Sample Consensus

To be properly used for change detection, our pixel-level
modeling approach requires maintenance and classification
rules that do not rely on the clustering or averaging of samples,
as LBSP features cannot easily be combined. Thus, we opted
for a basic sample consensus approach similar to ViBe’s [5]:
derived from [42], it determines if a given observation should
be considered foreground or background based on its similarity
to recently observed samples. This sample-based framework
allows our color-LBSP pixel representations to be used effec-
tively to detect even the most subtle local changes while
staying quite robust to irrelevant motion in complex scenarios.

The way it works is rather simple: first, the background
model, noted B , is formed through the combination of pixel
models, which each contain a set of N recent background
samples:

B(x) = {B1(x), B2(x), . . . , BN (x)} (4)

These samples, as described in the previous section, are
matched against their respective observation on the input frame
at time t , noted It (x), to classify the pixel at coordinate x as
foreground (1) or background (0). A simplified version of this
classification test where we ignore our two-step color-LBSP
verification is presented in (5); pseudocode for the two-step
approach is presented in [1].

St (x) =
{

1 if #
{

dist
(

It (x), Bn(x)
)
< R,∀n

}
< #min

0 otherwise
(5)

where St is the output segmentation map, dist
(
It (x), Bn(x)

)

returns the distance between the current observation and a
given background sample, R is the maximum distance thresh-
old and #min is the minimum number of matches required for
a background classification. In this context, a small R value
means that the model has to be very accurate in order to
successfully classify pixels as background. Using a larger
R leads to better resistance against irrelevant change, but
also makes it harder to detect foreground objects that are
very similar to the background. We further discuss how this
parameter is used to obtain individual color and LBSP distance
thresholds in Section III-C.

We fixed #min = 2 for our method as it was demon-
strated in [5]–[7], [17], and [42] to be a reasonable trade-off
between noise resistance and computational complexity.
However, the number of samples per pixel model (N) has to
be raised above the usual N = 20 proposed in [5]: this is due
to the larger representation space induced by LBSP features,
which are described using 16 bits instead of 8. Typically,
N is used to balance the precision and sensitivity of sample-
based methods: using fewer samples leads to more sensitive
but less precise models, and vice-versa. As it can be seen
in Fig. 4, when using only color information, the overall
F-Measure score (which indicates the “balanced” performance

364 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

Fig. 4. Average F-Measure scores obtained on the 2012 CDnet dataset for
different numbers of background samples, using color-only and color-LBSP
configurations of our method (without feedback).

of an algorithm) tends to saturate when N reaches 20. Yet,
with our own pixel-level modeling approach, it stabilizes at a
higher value.

Although these values depend on the complexity of the
studied scenes, we determined that based on the 2012 CDnet
dataset, a minimum of N = 35 samples was required for our
method to be used universally, with N = 50 being preferred
for better precision. Increasing N does not directly affect the
average pixel classification time in stable regions, as the first
#min are usually enough to break off the matching process.
It can however lengthen it in dynamic background regions
(where matches are sparser) and when foreground is present.
As a side note, the relative processing time difference between
these two configurations was about 15% on the entire 2012
CDnet dataset.

We update pixel models using a conservative, stochastic,
two-step approach similar to [5]: first, every time a pixel at
x is classified as background using (5), a randomly picked
sample of B(x) has a 1/T probability to be replaced by the
observation at It (x), where T is a “time subsampling factor”,
as defined in [5]. Then, one of the neighbors of B(x) also
has a 1/T probability of seeing one of its samples replaced
by this same observation. This new parameter controls the
adaptation speed of our background model: small values lead
to high update probabilities (and thus to the rapid evolution
of the model) and vice-versa. It is adjusted automatically,
as described in the next section.

The fact that samples are replaced randomly instead of
based on when they were last modified insures that a solid
history of long-term and short-term background representa-
tions can be kept in our pixel models. Likewise, since new
samples can only be inserted when a local pixel is recognized
as background, this approach prevents static foreground
objects from being assimilated too fast (as is often the case
for methods using “blind update” strategies). In theory, this
conservative approach implies that, given enough contrast,
some foreground objects will never be incorporated into the

background model. In practice, noise and camouflage always
cause gradual foreground erosion, meaning that all static
objects will eventually be classified as background.

The second update step described earlier (i.e. the “spatial
diffusion” step, as named by the authors of [5]) allows
regions that are homogeneous with the background to be
absorbed much faster. In other words, ghost artifacts, which
are commonly defined as falsely classified background regions
due to the removal of an object from the observed scene, can
be eliminated rapidly since they share many similarities with
other parts of the background. Moreover, this same “diffusion”
step improves the spatial coherency of the background model
to the point where limited camera motion can be tolerated.
Besides, relying on texture information prevents the spread
of samples across object boundaries. Simply put, even if a
sample is wrongfully transported from one region to another,
the odds that it might be matched in the new region are much
lower due to the use of LBSP features, which would detect
a textural change near the border. In fact, a static foreground
object with a color similar to the background may be correctly
classified for a long time, given that its border is noticeable.

Overall, as presented in Section IV-A, this basic method
is very robust against global illumination changes and soft
shadows, and it can easily detect camouflaged foreground
objects that are left unexposed when using a traditional color-
based approach. However, using LBP-like features at the pixel
level still results in false foreground classifications in most
dynamic background regions, as textures are much harder
to match than color values. The last part of our method,
which is presented in the following section, benefits from this
predicament.

C. Background Monitoring and Feedback Scheme

So far, we have seen how R, the maximum sample distance
threshold, and T , the model update rate, are the two most
important parameters in our method. They essentially control
its precision and sensitivity to local changes and can determine
how easily moving elements are integrated in the model.
In [5] and [6], global values were determined empirically for
both and used frame-wide. This kind of approach is flawed,
as using a global strategy to control model maintenance
and labeling decisions implies that all pixels will always
present identical behavior throughout the analyzed video
sequence. In reality, this assumption almost never holds
since an observed scene can present background regions with
different behaviors simultaneously, and these can vary over
time. Moreover, even if it were possible to fix parameters
frame-wide and obtain good overall performance, finding an
optimal set of values for a specific application requires time
as well as good knowledge of the method and dataset.

So, in our case, we consider R and T pixel-level state
variables and adjust them dynamically to avoid these para-
meterization problems. Ideally, to increase overall robustness
and flexibility, we would need to increase R in dynamic
background regions to reduce the chance of generating false
positives, and T wherever foreground objects are most likely
to be immobilized to make sure they do not corrupt the model.

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 365

Fig. 5. Typical 2D distributions for our monitoring variables (Dmin and v), local distance thresholds (R) and local update rates (T) on a baseline sequence of
CDnet (“highway”, row a), and on a sequence with important dynamic background elements (“fall”, row b). In R’s 2D map, bright areas indicate high distance
thresholds (thus easier sample-observation matches), while in T , they indicate low update probabilities (meaning the pixel models stay mostly unchanged over
time). We can notice in both cases that trees carry high R and low T values, and vice-versa for road; this means that foreground objects will more easily be
detected on the road, and are less likely to corrupt the model over time. (a) Highway #0826. (b) Fall #0289.

However, wrongfully increasing T in dynamic regions can
cause the model to stop adapting to useful background
representations, and increasing R in static regions can worsen
camouflage problems, leading in both cases to even more false
classifications. Therefore, to properly adjust these variables,
we first need to determine the nature of the region which
overlies a given pixel x while avoiding region-level or
object-level analyses because they are time-consuming.

A feedback approach based on the analysis of pixel-level
background motion patterns (“background dynamics”) was
proposed in [7] for this purpose: it uses the results of recent
comparisons between pixel models and local observations
to control local distance thresholds and update rates. Their
technique, albeit successful, has an important drawback: since
local comparison results (i) cannot be used when x is classified
as foreground, and (ii) are only used for feedback when B(x)
is updated, the response time of variable adjustments is rather
long (especially in noisy regions). This means that intermittent
dynamic background motion (e.g. swaying tree branches due
to wind bursts) will still cause many false classifications.

What we propose instead is a feedback scheme based on a
two-pronged background monitoring approach. Similar to [7],
we first measure background dynamics based on comparison
results between our pixel models and local observations, but
we do this continuously, without any regards to classification
results or model updates. This ensures an optimal response
time to events in all observed frame regions. Additionally, we
measure local segmentation noise levels based on the detection
of blinking pixels. This allows dynamic background regions to
be distinguished from static regions where foreground objects
might be present, essentially guiding which local adjustments
should be constrained to avoid over-adaptation and camouflage
problems. Two new dynamic controllers for R and T are then
introduced, which both rely on local “indicators” emanating
from the monitoring of background dynamics and segmenta-
tion noise.

So, first of all, the idea behind analyzing background
dynamics is to measure the motion entropy of a single pixel
location over a small temporal window based on model fidelity.
To obtain an indicator of such behavior, we use a recursive

moving average, defined as

Dmin(x) = Dmin(x)·(1−α) + dt (x)·α (6)

where α is the learning rate, and dt (x) the minimal normalized
color-LBSP distance between all samples in B(x) and It (x).
Since Dmin(x) is bound to the [0,1] interval, an entirely
static background region would have Dmin (x) ≈ 0, and a
dynamic region to which the model cannot adapt to would
have Dmin(x) ≈ 1. Following the same logic, areas with
foreground objects would also present high Dmin values since
foreground detection is defined through disparities between
pixel models and local observations. This is why [7] avoided
using a similar continuous monitoring approach; in our case,
it simply means that we cannot use this indicator by itself to
control R and T, as both risk deteriorating when foreground
objects stay in the same area for too long. This kind of
behavior can be observed in Fig. 5: large foreground objects
(in this case, cars), just like dynamic background elements,
can steadily increase local Dmin(x) values.

The monitoring of blinking pixels can help solve the
complication behind our continuous approach for Dmin .
In this case, it is similar to measuring the segmentation
entropy of individual pixel locations, and it allows our method
to distinguish noisy regions from purely static regions. This
kind of differentiation can guide adjustments so that dynamic
background motion triggers feedback mechanisms that regular
background or immobile foreground regions cannot. To obtain
such an indicator, we first define a 2D map of pixel-level
accumulators, noted v. Then, for every new segmented
frame St , we compute the binary map of all blinking pixels at
time t , noted Xt , by using an XOR operation with the previous
segmentation results, St−1. Finally, we update v using

v(x) =
{

v(x) + vincr if Xt (x) = 1

v(x) − vdecr otherwise
(7)

where vincr and vdecr are respectively 1 and 0.1, and v(x) is
always ≥ 0. This formulation means that regions with little
labeling noise would typically have v(x) ≈ 0, while regions
with unstable labeling would have large positive v(x) values.

366 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

Fig. 6. Segmentation results obtained with our proposed model on a baseline sequence of CDnet (“highway”, row a), and on a sequence with important
dynamic background elements (“fall”, row b), where (i) used no feedback or post-processing, (ii) used feedback but without post-processing, (iii) used post-
processing but without feedback, and (iv) used both. While false classifications are present in all variations, we can note that the results of (iv) are the most
consistent with object boundaries. (a) Highway #0826. (b) Fall #0289.

Directly using an XOR operation to detect blinking pixels
can be inconvenient since the borders of moving foreground
objects would also be included in the result; this can however
be dealt with by nullifying all areas in Xt which intersect
with the post-processed and dilated version of St . In the
end, as shown in Fig. 5, the distribution of values in v can
help highlight all frame regions where dynamic background
elements are truly present, as opposed to regions where
change has been recently seen.

With Dmin and v defined, we can now introduce dynamic
controllers for the main parameters of our method. First, local
distance thresholds can be recursively adjusted for each new
frame using

R(x) =
{

R(x) + v(x) if R(x)<(1+Dmin(x)·2)2

R(x) − 1
v(x) otherwise,

(8)

where R(x) is a continuous value always ≥ 1. The exponential
relation between R(x) and Dmin (x) is chosen over a linear
relation since it favors sensitive behavior in static regions
(and thus helps generate sparse segmentation noise), but also
provides robust and rapidly scaling thresholds elsewhere. Here,
the segmentation noise indicator v(x) is used as a factor
which, in dynamic regions, allows faster threshold increments
and can even freeze R(x) in place when Dmin(x) recedes
to lower values. This is particularly helpful against intermit-
tent dynamic background phenomena, as described earlier.
However, in static regions, this same factor allows R(x) to
stay low even when Dmin(x) ≈ 1, which is especially useful
when foreground objects are immobilized over x .

Besides, note that in (5), R is only an abstract value used
to simplify notation; the actual distance thresholds for color
and LBSP comparisons are obtained from R(x) using

Rcolor (x) = R(x) · R0
color (9)

and

Rlbsp(x) = 2R(x) + R0
lbsp, (10)

where R0
color and R0

lbsp respectively carry the default color
and LBSP distance thresholds (30 and 3 in our case). These
minima are reached when R(x) = 1 and they represent

the smallest amount of relevant local change our model
can perceive. We define the relation behind Rlbsp(x) as
nonlinear due to the binary nature of LBSP descriptors and
their comparison operator (Hamming distance).

On the other hand, local update rates are recursively
adjusted using

T (x) =
{

T (x) + 1
v(x)·Dmin (x) if St (x) = 1

T (x) − v(x)
Dmin (x) if St (x) = 0,

(11)

where T (x) is limited to the [Tlower , Tupper] interval
(by default, [2, 256]), and Dmin(x) is used concurrently with
v(x) to determine the variation step size.2 In short, this
relation dictates that regions with very little entropy (both
in terms of segmentation and motion) will see rapid update
rate increases (i.e. sudden drops in model update probabil-
ities) whenever pixels are classified as foreground (noted
St (x) = 1). In other words, in regions that are static and
motionless (v(x) ≈ Dmin(x) ≈ 0), once foreground is detected,
the model adaptation process will be instantly halted (due to
very high T (x)). This process can be resumed slowly based on
the value of v(x), and only once the foreground is gone. As for
dynamic background regions (or otherwise unstable regions),
this equation simply dictates that variations will be much
smoother, allowing the model to keep adapting to new obser-
vations even through continuous foreground classifications.

Overall, our feedback process depends not only on the
results of internal comparisons between pixel models and
local observations, but also on past labeling results. Due to
how v(x) works, our approach is more effective when sparse
segmentation noise is present under the form of blinking
pixels in most analyzed frame regions. Fortunately, due to the
sensitive nature of LBSP descriptors, such noise can easily
be generated when local distance thresholds are properly
adjusted. Furthermore, the use of a median filter as a post-
processing operation eliminates all of it, leaving the actual
output of our method intact at a very low cost. We present
in Fig. 5 the typical 2D distributions of R, T , Dmin and v
on frames showing static and dynamic background regions.

2Note that in practice, the indeterminate 0
0 form cannot be achieved in the

second right-hand statement of (11) as Dmin (x) never actually reaches 0 due
to its infinite impulse response property.

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 367

In Fig. 6 we present segmentation results obtained with and
without our feedback process (as well as with and without
post-processing). In the latter, we can observe that before
post-processing, the feedback-less configuration (Fig. 6.i)
displays many bad foreground blobs, but less random salt-
and-pepper (blinking pixel) noise than the configuration that
used feedback (Fig. 6.ii). After post-processing however, the
version with feedback (Fig. 6.iv) is much more reliable. This
demonstrates how important sparse segmentation noise is in
our feedback process, and how easily we can eliminate it.

D. Further Details

We stated earlier that our pixel models can handle short-
term and long-term motion patterns due to the stochastic
nature of their update rules. This is however not the case for
our feedback process, as Dmin is updated using a recursive
moving average formula. To counter this, we keep two sets
of Dmin variables simultaneously up-to-date using different
learning rates (i.e. a short-term one, αST = 25, and a
long-term one, αLT = 100). Then, when updating R(x)
via (8) and T (x) via (11), we respectively use the current
minimum and maximum Dmin (x) value between the two
moving averages. This modification allows smoother distance
thresholds and update rates adjustments, increasing the
stability and responsiveness of our feedback scheme against
most types of periodic background disturbances.

Also, to improve performance in scenarios with drastic
background changes (e.g. “light switch” events) or moving
cameras, we added a lightweight frame-level analysis
component to our method. Its goal is to automatically scale
Tupper and Tlower and trigger partial model resets in extreme
cases (like the frame-level component of [30]). It works by
analyzing discrepancies between short-term and long-term
temporal averages of downscaled input frames (using the same
learning rates as Dmin). When disparities are omnipresent and
persistent, it indicates that the analysis region suffered from
an important change, and that the model should allow faster
adaptations frame-wide. Downscaling the input frames allows
faster overall processing and helps ignore shaking cameras
while temporal averages are used to blur out and reduce the
effects of foreground objects on the discrepancies analysis.
This solution allows our method to compose with sudden
and continuous camera movements, as long as the observed
scene presents enough high-level detail. It is much less
computationally expensive than analyzing camera movements
using optical flow or feature detection/matching techniques.
By-products of this component, namely the downscaled
input frames and the temporal averages for different CDnet
sequences, are shown in Fig. 7.

For implementation details on how the default parameters
are scaled in this frame-level component, in the feedback
process or for grayscale images, the reader is invited to refer
to the source code.3

IV. EXPERIMENTS

To properly evaluate our method, we need to rely
on more than a few hand-picked frames from typical

3Available at https://bitbucket.org/pierre_luc_st_charles/subsense.

Fig. 7. By-products of the proposed frame-level analysis component at
various times of CDnet sequences; column (i) shows the downscaled input
frame used to update the moving averages, and columns (ii) and (iii)
respectively show the sequence’s short-term and long-term moving averages.
While the difference between these two is negligible for the entire highway
(row a) and fall (row b) sequences, it quickly becomes significant in the
twoPositionPTZCam sequence (row c) right after the camera rotates. The
pixel-wise analysis of discrepancies between these two moving averages
allows the detection of such drastic events. (a) Highway #0826. (b) Fall #0289.
(c) TwoPositionPTZCam #0356.

surveillance videos. It is very difficult to compare state-of-the-
art change detection methods, as many of them were tested on
small datasets with few scenarios, and using different ground
truth sources. Fortunately, a real benchmark was introduced for
the 2012 CVPR Workshop on Change Detection [3]. Unlike
its predecessors, the ChangeDetection.net (CDnet) dataset
offers a wide variety of segmentation scenarios set in realistic
conditions along with accurate ground truth data. More specif-
ically, ∼ 88, 000 frames obtained from 31 video sequences
were manually labeled and split into six categories: baseline,
camera jitter, dynamic background, intermittent object motion,
shadow and thermal. It was originally tested on 19 state-of-
the-art methods, but has since been used to rank dozens more
on their website, thus becoming a solid reference for method
comparisons. This dataset was also updated for the 2014
version of the same CVPR Workshop [4], adding 22 videos
and ∼ 70, 000 annotated frames in five new, much harder cate-
gories: bad weather, low framerate, night videos, pan-tilt-zoom
and turbulence. In both versions, the official metrics used to
rank methods are Recall (Re), Specificity (Sp), False Positive
Rate (FPR), False Negative Rate (FNR), Percentage of Wrong
Classifications (PWC), Precision (Pr) and F-Measure (FM).
For their specific descriptions, refer to [3] and [4].

We primarily use F-Measure to compare the performance
of different methods as it was found in [3] to be closely
correlated with the ranks used on the CDnet website, and is
generally accepted as a good indicator of overall performance.
We chose not to compare methods using their overall ranks on

368 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

TABLE I

AVERAGE PERFORMANCE COMPARISON OF DIFFERENT MODEL

CONFIGURATIONS ON THE 2012 CDNET DATASET

the CDnet website based on three reasons: 1) due to the non-
linearity of overall ranks, adding or removing a method from
the “comparison pool” (even when it is clearly outperformed
by others) can substantially affect how top methods are ranked;
2) since the ranking system relies on both FPR and Sp, which
are reciprocal (F P R = 1−Sp), “precise” methods are unduly
favored over “sensitive” ones; and 3) because change detection
is typically an unbalanced binary classification problem (there
are far more background pixels than foreground pixels in
analyzed sequences), using PWC as defined in [3] once again
favors “precise” methods. To provide a better assessment of
the overall performance of our method compared to others,
we also evaluated top-ranked methods in separate tables using
Matthew’s Correlation Coefficient (MCC). This metric is
designed to appraise the performance of binary classifiers in
unbalanced problems, and is defined by

MCC = (T P·T N) − (F P·F N)√
(T P+F P)·(T P+F N)·(T N+F P)·(T N+F N)

,

(12)

where TP, TN, FP and FN are defined like in [3].
As required, we used a unique parameter set for all videos

to determine the true flexibility of our method. Like we said
earlier, the post-processing operations we use are only based
on median blur and morphological operations and serve as
our regularization step, eliminating irrelevant blobs/holes from
segmentation maps. Note that all our segmentation results can
be downloaded online via the CDnet website.4

A. CDnet 2012

To demonstrate our first key contribution (i.e. color-LBSP
is preferable to other pixel-level characterization approaches),
we present in Table I how our pixel models fare in
comparison to similar alternatives when all are used on
the 2012 CDnet dataset under the sample-based approach
detailed in Section III-B. Note that these scores are the
averages obtained over six scenario categories based on the
evaluation technique of CDnet. Here, we can immediately see
that 3 × 3 LBP and SILTP features are ill-suited to this kind

4Available at http://wordpress-jodoin.dmi.usherb.ca/method/139/.

of pixel-level modeling. SILTP features can detect texture
variations more easily, but just like LBP, they are far too
sensitive in most scenarios and cannot properly detect color
changes between two frames when textures are unaffected.
Nonetheless, both LBP and SILTP configurations obtain
decent results when combined with color. According to
F-Measure scores, only LBSP features are preferable to color
information in this framework; this is due to their ability to
detect color and texture changes simultaneously. Furthermore,
the color-LBSP configuration offers performance on par
with the best methods presented in [3]. In general, we can
note that configurations that used local binary descriptors
were inherently more sensitive to change than the baseline
color-based approach (as visible through Recall scores), albeit
at the expense of segmentation precision. However, among all
tested binary descriptor configurations, color-LBSP is the best
choice because it combines good sensitivity and precision.

We also inserted into Table I the results obtained using our
color-LBSP configuration with the proposed feedback process
(noted color-LBSP-Feedback) to demonstrate our second key
contribution, i.e. continuous dynamic parameter adjustments
can drastically improve performance. We can observe that
color-LBSP obtains worse overall Precision and Recall scores
(and thus a worse F-Measure) than our complete method.
This is due to the sensitive nature of our pixel models,
which cause many false classifications when they are not
properly adjusted to their overlying regions. In the case of
color-LBSP, a compromise had to be made to reach good
overall flexibility (i.e. sensitivity had to be globally lowered
to accommodate for complex scenarios). This comparison
demonstrates that adjusting local parameters dynamically is
extremely beneficial for this kind of approach, especially
in terms of Precision. Note that for color-LBSP and color-
LBSP-Feedback, the results were obtained by independently
tuning their threshold values (i.e. R0

color and R0
lbsp) for optimal

overall F-Measures. Interestingly, and as we expected, the
color-LBSP-Feedback configuration performed much better
with lower default thresholds (i.e. with a higher theoretical
sensitivity) than color-LBSP, even in simple scenarios with
completely static backgrounds; this can be explained by the
affinity of our feedback scheme for noisier segmentation
results. Furthermore, we present how this same feedback
scheme performs when some sparse noise is removed using a
3 × 3 median filter before detecting blinking pixels (under the
color-LBSP-Feedback-LessNoise configuration). From these
results, we can again see that guiding local change sensitivity
and update rates using segmentation noise is beneficial, as
the Precision and F-Measure scores obtained for this new
configuration are lower than those of color-LBSP-Feedback.

The complete results of our best configuration (color-
LBSP-Feedback, noted SuBSENSE below) on this same
dataset are then displayed in Table II. While these numbers
may not mean much by themselves, we can see that overall
performance in the baseline and shadow categories is very
good, and our method’s Recall is generally high. These two
categories consist of simple sequences where pedestrians and
cars are the main focus with various types of camouflage and
illumination variation problems involved. We can also notice

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 369

TABLE II

COMPLETE RESULTS FOR SuBSENSE ON THE 2012 CDNET DATASET

TABLE III

OVERALL AND PER-CATEGORY F-MEASURE COMPARISONS, CDNET 2012 DATASETa

that the intermittent object motion category poses the biggest
challenge; this is true for any change detection solution
that does not focus explicitly on static object detection and
segmentation. This category mostly contains videos where
objects are abandoned and parked cars suddenly start moving.
The camera jitter and dynamic background scenarios are
well handled by our approach, as in both cases, overall
F-Measure and Precision are above 80%. The same can be
said for thermal-infrared videos; in this case, our automatic
distance threshold adjustments allow very good Recall
despite numerous important camouflage problems in all
sequences.

We show in Tables III and VI how our method compares
to recent and classic state-of-the-art solutions, based on their
overall 2012 CDnet results. Due to a lack of space, we only
listed the classic and top-ranked methods out of the 32 that
were published as of July 2014. In Table III, SuBSENSE
is better in five out of six categories, with a 6.2% relative
overall F-Measure improvement over the previous best
method (CwisarD). Our performance in the intermittent object
motion category is well above the average set by the methods
tested in [3], and is only surpassed by SGMM-SOD, which
used static object detection to specifically target this kind
of scenario. While it cannot be deduced from the results
shown here, our per-category Recall scores are the main reason
why our F-Measures are so high compared to other methods;

this again demonstrates that our approach can handle most
camouflage problems due to its ability to detect very subtle
spatiotemporal changes and locally adjust its sensitivity to
change. The smaller overview shown in Table VI also support
this conclusion: both our overall Recall and Precision scores
are much higher than most others. We can also note that overall
MCC scores are somewhat correlated with F-Measure scores,
and a similar gap between our method and the second best is
visible. Typical segmentation results for our proposed method
as well as for the next best method (Spectral-360) and a classic
one (GMM) are shown in Fig. 8.

B. CDnet 2014

For the 2014 update of the CDnet dataset, we first show
in Table IV the complete results of SuBSENSE on all new
scenario categories. It is easy to see how these new scenarios
are much harder to deal with than the original ones: only bad
weather and turbulence scenarios seem to result in acceptable
performance (with F-Measures greater than 80%). The former
consists of outdoor surveillance footage taken under snowy
conditions and the latter shows long distance thermal-infrared
video surveillance with important air turbulence due to a
high temperature environment. Results in the pan-tilt-zoom
category, on the other hand, are our worse so far; in this kind
of scenario, the basic assumption behind all low-level change

370 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

Fig. 8. Typical segmentation results for various sequences of the 2012 version of the CDnet dataset; column a) shows groundtruth maps, b) shows our
segmentation results, c) Spectral-360’s results and d) GMM’s results. From top to bottom, the sequences are highway (from the baseline category), fall
(dynamic background), traffic (camera jitter), and copyMachine (shadow). Note that gray areas are not evaluated.

TABLE IV

COMPLETE RESULTS FOR SuBSENSE ON THE 2014 CDNET DATASET

detection methods, i.e. the camera remains static, is violated.
Our frame-level analysis component allows our method to
have a minimum level of functionality, but despite the apparent
simplicity of most sequences, half of the segmentation results
would hardly be of any use to other applications. Using a
more sophisticated, high-level approach would result in better
performance than a pixel-level change detection solution in
this kind of scenario. Besides, even though scores in the
low framerate category are generally low, in reality, our
method performed well on all but one video. In this particular
sequence, a marina is filmed at 0.17 frames per second under
wavering global lighting conditions while many background
elements (boats, water) show intense dynamic behavior.
Finally, night videos also pose a significant challenge: the
footage in this category is only taken from urban traffic
monitoring cameras at night, meaning that photon shot noise,

compression artifacts, camouflaged objects and glare effects
from car headlights must all be handled simultaneously.

We then compare SuBSENSE to all other top-ranked
methods tested on this same dataset in Tables V and VII.
First, in Table V, our F-Measure scores once again stand
out as well above average. In fact, even in the PTZ cate-
gory, all evaluated methods obtained similar or worse scores,
despite some of them using more sophisticated frame-level
motion analysis approaches. Overall, we still obtain the best
F-Measure scores in four out of five categories, and surpass
the second best method with a 6.5% relative improvement in
overall F-Measure for the 2014 dataset only. This indicates
that our method is extremely flexible and can adapt even to
the most difficult change detection scenarios. In Table VII,
we can see that MCC is not as correlated with F-Measure
as it was for the 2012 dataset; our method still achieves the

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 371

TABLE V

OVERALL AND PER-CATEGORY F-MEASURE COMPARISONS, CDNET 2014 DATASETa

Fig. 9. Typical segmentation results for various sequences of the 2014 version of the CDnet dataset; column a) shows groundtruth maps, b) shows
our segmentation results, c) FTSG’s results and d) GMM’s results. From top to bottom, the sequences are snowFall (from the bad weather category),
streetCornerAtNight (night videos), twoPositionPTZCam (PTZ), and turbulence1 (turbulence). Note that gray areas are not unevaluated.

TABLE VI

AVERAGE PERFORMANCE COMPARISON OF DIFFERENT

METHODS ON THE 2012 CDNET DATASET

best overall score, but only marginally. Note that since part
of the 2014 dataset is withheld for online testing, all MCC
scores were computed based on the publicly available dataset,

TABLE VII

AVERAGE PERFORMANCE COMPARISON OF DIFFERENT

METHODS ON THE 2014 CDNET DATASET

which may explain this difference. Besides, the second and
third best methods, FTSG and CwisarDH, receive noticeably
better overall Precision scores. Again, we show in Fig. 9

372 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2015

segmentation results for our proposed method as well as for the
second best one (FTSG) and a classic one (GMM). Note that
for all 2014 results, we used the same parameters as for the
2012 dataset.

C. Processing Speed

We did not optimize any component of our final method;
it ran on a third generation Intel i5 CPU at 3.3 GHz with no
architecture-specific instruction, using OpenCV’s background
subtraction interface (C++) and saving output frames on
a local hard drive. Nonetheless, the feedback-less version
(color-LBSP in Section IV-A) clocked an average of over
90 frames per second on the entire 2012 CDnet dataset,
and the complete method (SuBSENSE) processed the same
dataset at 45 (both were running one sequence per CPU core).
Comparing these results with those of recent state-of-the-art
methods on the same dataset is impossible due to the wide
variety of platforms involved for testing, the lack of a common
reference and the rarity of openly available source code.

Besides, our method can be fully initialized with a
single image, requires no training and performs all dynamic
adjustments on-line, for every new frame. The low-level
nature of our approach also favors high-speed parallel
implementations, as no region-level or object-level processing
is required. Processing speed could be further improved by
reducing the total number of samples in our pixel models (N),
at the expense of some flexibility in complex scenarios. This
same parameter could also be controlled dynamically to reduce
overall computational cost since fewer samples are usually
needed for good classifications in static background regions.

V. CONCLUSION

We presented a novel, highly efficient and universal
foreground/background segmentation algorithm based on
change detection in video sequences. Our method uses
spatiotemporal information based on color and texture to
characterize local representations in pixel-level models while
staying robust to most types of illumination variations, includ-
ing shadows. It also relies on a pixel-level feedback scheme
that automatically adjusts internal sensitivity to change and
update rates. Our approach continuously monitors both local
model fidelity and segmentation noise to guide these adjust-
ments, allowing for fast responses to intermittent dynamic
background motion. As such, it can be effectively used
in complex surveillance scenarios presenting many different
challenges simultaneously.

Experiments on the largest change detection dataset
available yet have shown that, in terms of average F-Measure,
we surpass all previously tested methods in nine out of eleven
scenario categories as well as overall. Categories where our
segmentation results were still inaccurate can be considered
the next major challenge in change detection: in those cases,
the assumptions that have been commonly followed since the
late 1990s no longer hold (e.g. the camera no more static).
These experiments have also confirmed the benefit of using
LBSP features in our pixel models as well as the benefit of

using our continuous parameter adjustment scheme based on
model fidelity and segmentation noise.

A number of improvements can still be considered for our
method; for example, region-level or object-level analyses
could be used as extra regularization steps to improve the
shape consistency of blobs over time. Also, more sophisticated
post-processing operations based on connected components or
Markov Random Fields could also help eliminate larger noise
patches from our final segmentation results. Besides, since our
method is relatively simple and operates at the pixel level,
it has a lot of potential for hardware and high-speed parallel
implementations.

REFERENCES

[1] P.-L. St-Charles and G.-A. Bilodeau, “Improving background subtraction
using local binary similarity patterns,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis., Mar. 2014, pp. 509–515.

[2] P.-L. St-Charles, G.-A. Bilodeau, and R. Bergevin, “Flexible background
subtraction with self-balanced local sensitivity,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 414–419.

[3] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar,
“Changedetection.net: A new change detection benchmark dataset,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2012,
pp. 1–8.

[4] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and
P. Ishwar, “CDnet 2014: An expanded change detection benchmark
dataset,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2014, pp. 387–394.

[5] O. Barnich and M. Van Droogenbroeck, “ViBe: A universal background
subtraction algorithm for video sequences,” IEEE Trans. Image Process.,
vol. 20, no. 6, pp. 1709–1724, Jun. 2011.

[6] M. Van Droogenbroeck and O. Paquot, “Background subtraction: Exper-
iments and improvements for ViBe,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2012, pp. 32–37.

[7] M. Hofmann, P. Tiefenbacher, and G. Rigoll, “Background segmen-
tation with feedback: The pixel-based adaptive segmenter,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2012, pp. 38–43.

[8] N. Friedman and S. Russell, “Image segmentation in video sequences:
A probabilistic approach,” in Proc. 13th Conf. Uncertainty Artif. Intell.,
1997, pp. 175–181.

[9] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2. Jun. 1999, pp. 246–252.

[10] Z. Zivkovic, “Improved adaptive Gaussian mixture model for back-
ground subtraction,” in Proc. 17th Int. Conf. Pattern Recognit., vol. 2.
Aug. 2004, pp. 28–31.

[11] Z. Zivkovic and F. van der Heijden, “Efficient adaptive density estima-
tion per image pixel for the task of background subtraction,” Pattern
Recognit. Lett., vol. 27, no. 7, pp. 773–780, 2006.

[12] D.-S. Lee, “Effective Gaussian mixture learning for video background
subtraction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5,
pp. 827–832, May 2005.

[13] P. KaewTraKulPong and R. Bowden, “An improved adaptive background
mixture model for real-time tracking with shadow detection,” in Video-
Based Surveillance Systems. New York, NY, USA: Springer-Verlag,
2002, pp. 135–144.

[14] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for
background subtraction,” in Proc. 6th Eur. Conf. Comput. Vis., 2000,
pp. 751–767.

[15] A. Mittal and N. Paragios, “Motion-based background subtraction using
adaptive kernel density estimation,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 2. Jul. 2004, pp. II-302–II-309.

[16] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for
object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 11, pp. 1778–1792, Nov. 2005.

[17] M. Van Droogenbroeck and O. Barnich, “ViBe: A disruptive method
for background subtraction,” in Background Modeling and Foreground
Detection for Video Surveillance, T. Bouwmans, F. Porikli, B. Hoferlin,
and A. Vacavant, Eds. Boca Raton, FL, USA: CRC Press, Jun. 2014,
ch. 7.

ST-CHARLES et al.: SuBSENSE: UNIVERSAL CHANGE DETECTION METHOD 373

[18] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Background
modeling and subtraction by codebook construction,” in Proc. IEEE Int.
Conf. Image Process., Oct. 2004, pp. 3061–3064.

[19] M. Wu and X. Peng, “Spatio-temporal context for codebook-based
dynamic background subtraction,” AEU-Int. J. Electron. Commun.,
vol. 64, no. 8, pp. 739–747, 2010.

[20] B. Wang and P. Dudek, “A fast self-tuning background subtraction algo-
rithm,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2014, pp. 401–404.

[21] L. Maddalena and A. Petrosino, “A self-organizing approach to back-
ground subtraction for visual surveillance applications,” IEEE Trans.
Image Process., vol. 17, no. 7, pp. 1168–1177, Jul. 2008.

[22] L. Maddalena and A. Petrosino, “The SOBS algorithm: What are
the limits?” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Workshops, Jun. 2012, pp. 21–26.

[23] M. De Gregorio and M. Giordano, “Change detection with weightless
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2014, pp. 409–413.

[24] A. Morde, X. Ma, and S. Guler, “Learning a background model for
change detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. Workshops, Jun. 2012, pp. 15–20.

[25] A. Schick, M. Bauml, and R. Stiefelhagen, “Improving foreground
segmentations with probabilistic superpixel Markov random fields,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2012, pp. 27–31.

[26] R. H. Evangelio and T. Sikora, “Complementary background models for
the detection of static and moving objects in crowded environments,” in
Proc. 8th IEEE Int. Conf. Adv. Video Signal Based-Surveill., Aug. 2011,
pp. 71–76.

[27] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier. (2012). “Back-
ground subtraction based on local shape.” [Online]. Available:
http://arxiv.org/abs/1204.6326

[28] N. M. Oliver, B. Rosario, and A. P. Pentland, “A Bayesian computer
vision system for modeling human interactions,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 8, pp. 831–843, Aug. 2000.

[29] D.-M. Tsai and S.-C. Lai, “Independent component analysis-based
background subtraction for indoor surveillance,” IEEE Trans. Image
Process., vol. 18, no. 1, pp. 158–167, Jan. 2009.

[30] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,
“Wallflower: Principles and practice of background maintenance,”
in Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 1. Sep. 1999,
pp. 255–261.

[31] Y. Nonaka, A. Shimada, H. Nagahara, and R. Taniguchi, “Evaluation
report of integrated background modeling based on spatio-temporal
features,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. Workshops, Jun. 2012, pp. 9–14.

[32] R. Wang, F. Bunyak, G. Seetharaman, and K. Palaniappan, “Static and
moving object detection using flux tensor with split Gaussian models,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 420–424.

[33] M. Heikkila and M. Pietikainen, “A texture-based method for modeling
the background and detecting moving objects,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 4, pp. 657–662, Apr. 2006.

[34] S. Zhang, H. Yao, and S. Liu, “Dynamic background modeling and
subtraction using spatio-temporal local binary patterns,” in Proc. 15th
IEEE Int. Conf. Image Process., Oct. 2008, pp. 1556–1559.

[35] S. Liao, G. Zhao, V. Kellokumpu, M. Pietikainen, and S. Z. Li,
“Modeling pixel process with scale invariant local patterns for
background subtraction in complex scenes,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2010, pp. 1301–1306.

[36] G.-A. Bilodeau, J.-P. Jodoin, and N. Saunier, “Change detection in
feature space using local binary similarity patterns,” in Proc. Int. Conf.
Comput. Robot Vis., May 2013, pp. 106–112.

[37] D. H. Parks and S. S. Fels, “Evaluation of background subtraction
algorithms with post-processing,” in Proc. 5th IEEE Int. Conf. Adv. Video
Signal Based Surveill., Sep. 2008, pp. 192–199.

[38] S. Herrero and J. Bescós, “Background subtraction techniques:
Systematic evaluation and comparative analysis,” in Advanced Concepts
for Intelligent Vision Systems, vol. 5807, J. Blanc-Talon, W. Philips,
D. Popescu, and P. Scheunders, Eds. Berlin, Germany: Springer-Verlag,
vol. 5807, 2009, pp. 33–42.

[39] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger,
“Comparative study of background subtraction algorithms,” J. Electron.
Imag., vol. 19, no. 3, p. 033003, 2010.

[40] S. Brutzer, B. Hoferlin, and G. Heidemann, “Evaluation of background
subtraction techniques for video surveillance,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1937–1944.

[41] P.-M. Jodoin, S. Piérard, Y. Wang, and M. Van Droogenbroeck,
“Overview and benchmarking of motion detection methods,” in Back-
ground Modeling and Foreground Detection for Video Surveillance,
T. Bouwmans, F. Porikli, B. Hoferlin, and A. Vacavant, Eds. Boca Raton,
FL, USA: CRC Press, Jun. 2014, ch. 1.

[42] H. Wang and D. Suter, “A consensus-based method for tracking:
Modelling background scenario and foreground appearance,” Pattern
Recognit., vol. 40, no. 3, pp. 1091–1105, 2007.

[43] M. De Gregorio and M. Giordano, “A WiSARD-based
approach to CDnet,” in Proc. 11th BRICS Countries
Congr., Sep. 2013, pp. 172–177. [Online]. Available: http://
www.ieeeexplore.us/xpl/articleDetails.jsp?tp=&arnumber=6855846

[44] M. Sedky, M. Moniri, and C. C. Chibelushi, “Spectral-360: A physics-
based technique for change detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, Jun. 2014, pp. 405–408.

[45] T. S. F. Haines and T. Xiang, “Background subtraction with Dirichlet
process mixture models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 4, pp. 670–683, Apr. 2014.

Pierre-Luc St-Charles (S’13) received the B.Eng.
degree in computer engineering from the École
Polytechnique de Montréal, Montréal, QC, Canada,
in 2013, where he is currently pursuing the
Ph.D. degree. He has been working part-time
with the Computer Research Institute of Montréal,
Montréal, since 2011. His research interests include
image and video segmentation, multimodal registra-
tion, and video surveillance applications.

Guillaume-Alexandre Bilodeau (M’10) received
the B.Sc.A. degree in computer engineering and the
Ph.D. degree in electrical engineering from Univer-
sité Laval, Québec, QC, Canada, in 1997 and 2004,
respectively.

He was appointed as an Assistant Professor with
the École Polytechnique de Montréal, Montréal, QC,
Canada, in 2004, and an Associate Professor in 2011,
where he has been a Full Professor since 2014.
His research interests encompass in image and video
processing, video surveillance, object recognition,

content-based image retrieval, and medical applications of computer vision.
Dr. Bilodeau is a member of the Province of Québec’s Association of

Professional Engineers and the REPARTI Research Network.

Robert Bergevin (M’84) received the B.Eng. degree
in electrical engineering and the M.A.Sc. degree in
biomedical engineering from the École Polytech-
nique de Montréal, Montréal, QC, Canada, and the
Ph.D. degree in electrical engineering from McGill
University, Montréal. His research interests are in
image analysis and cognitive vision. His main works
address in generic modeling and recognition of
objects in static images and tracking and modeling
of people and animals in image sequences.

He is a member of the Computer Vision and
Systems Laboratory with Université Laval, Québec, QC, Canada, where he
is a Professor with the Department of Electrical and Computer Engineering.
He is also a member of the Province of Québec’s Association of Professional
Engineers and serves as an Area Editor of the Computer Vision and Image
Understanding journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

