
J Supercomput (2015) 71:2275–2308
DOI 10.1007/s11227-015-1382-3

An optimal many-core model-based supercomputing
for accelerating video-equipped fire detection

Junsang Seo · Myeongsu Kang · Cheol Hong Kim ·
Jong-Myon Kim

Published online: 24 January 2015
© Springer Science+Business Media New York 2015

Abstract Automatic fire detection has become more and more appealing because of
the increasing use of video capabilities in surveillance systems used for early detection
of fire. However, its high computational complexities limit its use in real-time applica-
tions. To meet the real-time processing of today’s fire detection techniques, this study
proposes a single instruction, multiple data many-core model. To design an efficient
many-coremodel for image processing applications such as fire detection, a key design
parameter is the image data-per-processing-element (IDPE) variation of themany-core
system, which is the amount of image data directlymapped to each processing element
PE. This study quantitatively evaluates the impact of the IDPE variation on system per-
formance and energy efficiency for themulti-stage fire detection approach that consists
of movement-containing region detection, color segmentation, fire feature extraction
of fires, and decision making if there is a fire or non-fire in a processing video frame.
In this study, we use six IDPE ratios to determine an optimal many-core model that
provides the most efficient operation for fire detection using architectural and work-
load simulation. Experimental results indicate that the most efficient many-core model
is achieved at the 64 IDPE value in terms of the worst-case execution time and energy

J. Seo · J.-M. Kim (B)
School of Electrical Engineering, University of Ulsan,
Bldg. #7, Room #308, 93 Daehak-ro Nam-gu, Ulsan 680-749, South Korea
e-mail: jongmyon.kim@gmail.com; jmkim07@ulsan.ac.kr

J. Seo
e-mail: jsseo2006@gmail.com

M. Kang · C. H. Kim
School of Electronics and Computer Engineering, Chonnam National University,
Bldg. #7, Room#506, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
e-mail: ilmareboy@gmail.com

C. H. Kim
e-mail: cheolhong@gmail.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1382-3&domain=pdf

2276 J. Seo et al.

efficiency. In addition, this study compares the performance of themost efficientmany-
core configurationwith that of a commercial graphics processing unit (NvidiaGeForce
GTX480) to show the improved performance of the proposedmany-coremodel for the
fire detection algorithm. This many-core configuration outperforms the commercial
graphic processing unit in the worst-case execution time and energy efficiency.

Keywords Design space exploration · Fire detection · General-purpose graphic
processing units · Many-core model

1 Introduction

Early fire detection has been an increasingly important issue since it is closely related
to personal security and property. In spite of the fact that sensor-based fire detection
systems first came into the spotlight by detecting either heat or smoke for early iden-
tification of whether or not a fire is occurring, these systems have the drawback that
sensors should be densely distributed in a wide area for a highly precise fire detection
system [1]. Likewise, sensor-based fire detection systems may be inappropriate for
early fire detection since the spread of heat and smoke requires some time after the
onset of fire.

Recent advances in video processing technologies have led to a wave of research
on computer vision-based fire detection systems whose advantages are summarized
as follows [2]:

• As the speed of light transmission is much faster than that of the heat and smoke,
computer vision-based fire detection is appropriate for early detection of fire.

• In general, images have more scene information such as color and texture, which
enables diverse approaches to fire detection.

In this study, we quantitatively investigate recent computer vision-based fire/flame
detection technologies. Most are based on the multi-stage pattern recognition, which
basically consists of the following four stages [3–20]: movement-containing region
detection (MCRD), color segmentation (CS), feature extraction (FE), and classifica-
tion (CLASSIFY). MCRD is a fundamental task in computer vision-based fire detec-
tion and a number of methods have been proposed to detect movement-containing
regions from static cameras, including optical flow [12,22], temporal differencing [21],
Gaussian mixture modeling [10,17], and background subtraction [11,13,16,20,23–
25]. Background subtraction has been widely used for MCRD in fire detection due to
its high efficiency. Although MCRD selects candidate regions of fire, the candidate
regions may still include moving objects with colors that are similar to the color of fire
such as red vehicles, vehicle brake lights, and a personwearing red clothes. To dealwith
this issue, many researchers then detect more refined regions of fire using color infor-
mation [2–7,9–11,14,16,17,20,25,26], and extract features of fire including charac-
teristics of fire such as flicker [10,11,23,26,27], color variations under spatial wavelet
analysis [11,23,26], and dynamic textures [19]. Finally, a classifier is employed to
determine if there is a fire or a non-fire in a processing movie frame. To do this, the
following classifiers are commonly considered: support vector machines [5,9,17,28–
30] and neural networks [12,20]. As a classifier, neural network techniques have

123

An optimal many-core model 2277

inherent drawbacks such as local optimization problems, lack of generalization, and
uncontrolled convergence. In addition, they require a large amount of training data to
achieve high classification accuracy. Unlike neural networks, support vector machines
have the following advantages: (1) the computational complexity of SVMs does not
depend on the dimensionality of the input feature vector, (2) SVMs are less prone to
overfitting, which can be a major reason that SVMs often outperform neural networks
in practice, and (3) the solution to SVMs is global and unique while neural networks
suffer from the existence of multiple local minima solutions as aforementioned. Thus,
we use a support vector machine as a classifier for early detection of fire in this study.

To precisely detect fire in movies, these complicated fire detection approaches are
commonly utilized. However, they demand tremendous computational cost, which
limits their use in real-time applications [31]. Among the many computational models
available for complex image processing, parallel computers including single instruc-
tion multiple data (SIMD) many-core architectures and graphics processing units
(GPUs) are promising candidates [32–39]. Typically, thousands of processing ele-
ments (PEs) in the many-core architecture are utilized to accelerate target applications
including fire detection. Currently, GPUs have been adopted in fire detection due to
their high computational throughput capability [40]. However, inter-streaming multi-
processor (SMs) communication on GPUs is inefficiently achieved by implementing
barrier synchronization via the host, which occurs by terminating the current GPU-
offloaded computation and then re-launching a new GPU-offloaded computation. The
lack of such inter-SMcommunication largely limits data-parallel or task-parallel appli-
cations [41,42]. Moreover, GPUs consume a large amount of power by integrating
more hardware resources and operating them at higher frequencies [43].

While it is evident that the overall performance improves by increasing the number
of PEs [44], no general consensus has been reached regarding which grain sizes of
processors and memories on the many-core system provide the most efficient oper-
ation of the aforementioned fire detection algorithms with regard to performance
and energy efficiency. This study introduces the effects of various image data-per-
processing-element (IDPE) ratios which indicate the variations in the amount of image
data directly mapped to each PE on the performance and energy efficiency, and then
identifies the most efficient many-core model that delivers the required processing
performance with the longest battery life for the fire detection algorithm. In this study,
we quantitatively evaluate the effects of different IDPE ratios using architectural and
workload simulation. To determine the most efficient many-core model, six different
IDPE ratios are simulated using the fire detection algorithm with five different fire
and non-fire movie clips. Experimental results indicate that the most efficient opera-
tion is achieved at IDPE = 64 in terms of execution time and energy efficiency. In
addition, the most efficient many-core configuration outperforms a commercial GPU
(i.e., Nvidia GeForce GTX 480) in both execution time and energy efficiency.

The rest of this paper is organized as follows. Section 2 presents a multi-stage fire
detection scheme andvalidates its accuracy; Sect. 3 introduces the referencemany-core
model along with parallel implementation of the multi-stage fire detection algorithm
on it. Section 4 analyzes the application characteristics in terms of the performance
and energy efficiency, and finally Sect. 5 concludes this paper.

123

2278 J. Seo et al.

2 Multi-stage fire detection scheme and its validation

To evaluate the performance of the reference many-core model enabling real-time
fire detection, we use the following four-stage fire detection algorithm, consisting of
background subtraction-based MCRD, CS for detecting fire-like regions using the
YCbCr color model, FE using a normalized wavelet energy which well describes the
spatial behavior for fire/flame, and a SVM-based decision making which identifies
between fire and non-fire in a processing movie frame (CLASSIFY). Figure 1 shows
a flow diagram of the multi-stage fire detection scheme. More details about each step
will be given below.

2.1 Movement-containing region detection (MCRD) based on background
subtraction

Since the boundaries of a fire tend to continuously fluctuate, MCRD has been widely
used as the first step of fire detection, which selects candidate regions of fire. As
mentioned in the previous section, background subtraction is commonly utilized for
MCRD. Background subtraction separates foreground objects from the background
in a sequence of movie frames. A pixel positioned at (i , j) is assumed to be moving
if the following condition is satisfied:

|In(i, j) − Bn(i, j)| > Th, (1)

where In(i , j) represents the intensity value of the pixel at location (i , j) in the nth
gray-level input movie frame, Bn(i , j) is the background intensity value at the same
pixel position, and Th is a threshold value which was experimentally set to 3 in this
study. The background intensity value is iteratively updated using (2):

Bn+1(i, j) =
⎧
⎨

⎩

Bn(i, j) + 1 if In(i, j) > Bn(i, j)
Bn(i, j) − 1 if In(i, j) < Bn(i, j)
Bn(i, j) if In(i, j) = Bn(i, j)

, (2)

where Bn+1(i , j) is the estimated background intensity value of the pixel at location
(i , j) and Bn(i , j) is the previously estimated background intensity value at the same
pixel position. Initially, the background intensity value B1(i , j) is set to the intensity
value of the first movie frame, I1(i , j).

Fig. 1 A flow diagram of the multi-stage fire detection scheme

123

An optimal many-core model 2279

2.2 Color segmentation for detecting fire-like regions

As mentioned in Sect. 1, a number of moving objects (e.g., people, vehicles, animals,
and so on) besides fire can be still included after MCRD. Thus, many researchers
have used further information such as color variations and flicker of fire to get rid of
spurious fire-like regions. To enhance fire detection ability in this study, we carry out
color segmentation, classifying colors that are similar to those of fire after MCRD.

The color of fire is not a reflection of the natural light, but it varies with the chemical
properties of the burnt material and its burning temperature (e.g., white, blue, gold,
or green). Although a set of rules has been developed over the past few decades to
classify fire pixels by utilizing raw red–green–blue (RGB) information in color movie
sequences, the RGB color model has shortcomings of illumination dependence. This
implies that the illumination change in a movie frame greatly influences RGB-based
color segmentation rules. In addition, it is impossible to separate a pixel’s value into
intensity and chrominance in the RGB color space. However, the chrominance has
been widely used in modeling the color of fire in practice because it gives more
robust representation for fire pixels. Thus, color spaces, such as YCbCr, YUV, and
CIE Lab, can be promising candidates for the purpose of fire-like region detection,
in which the chrominance components (Cb and Cr in the YCbcCr color model, U
and V in the YUV color model, a and b in the CIE Lab color model) and luminance
component (Y in bothYCbCr andYUVcolormodels, L in theCIELab colormodel) of
amovie frame can be processed independently.According to [45–47], theYCbCr color
space is more effective for distinguishing luminance information from chrominance
information than other color spaces. Thus, the YCbCr color space is used for the
multi-stage fire detection algorithm. The color conversion from the RGB color space
to the YCbCr color space is performed as follows:

⎡

⎢
⎣

Y

Cb

Cr

⎤

⎥
⎦ =

⎡

⎢
⎣

0.2568 0.5041 0.0979

−0.1482 −0.2910 0.4392

0.4392 −0.3678 −0.0714

⎤

⎥
⎦

⎡

⎢
⎣

R

G

B

⎤

⎥
⎦ +

⎡

⎢
⎣

16

128

128

⎤

⎥
⎦ , (3)

where Y is the luminance and Cb and Cr are the chrominance components for blue-
difference and red-difference, respectively. To model fire pixels, the defined rules for
the RGB color space, i.e., R>G>B and R>Rmean, can be translated into the YCbCr
space such as Y>Cb and Cr>Cb. In addition, since the fire-containing regions are
generally the brightest regions in the observed scene, the mean values of the three
channels include important information, which can be expressed as follows [1]:

Fcandidate(i, j)=
{
1, if Y (i, j)>Ymean,Cb(i, j)<Cbmean,Cr(i, j)>Crmean

0, otherwise
, (4)

where Fcandidate(i , j) indicates that any pixel at the spatial location (i , j)which satisfies
the condition given in (4) is labeled as a fire pixel. Likewise, the mean values of the
three channels in the YCbCr color space for anM×N image can be defined as follows:

123

2280 J. Seo et al.

Ymean = 1

M × N

M∑

i

N∑

j

Y (i, j)

Cbmean = 1

M × N

M∑

i

N∑

j

Cb(i, j) (5)

Crmean = 1

M × N

M∑

i

N∑

j

Cr(i, j),

where Y (i , j), Cb(i , j), and Cr(i , j) are the luminance, chrominance-blue, and
chrominance-red values at the spatial location (i , j) after MRCD, respectively.

2.3 Feature extraction (FE) via the single-level wavelet decomposition

Due to the nature of turbulent fire flicker, there are generally more color variations
in genuine fire-containing regions whereas there are few color variations in the can-
didate regions of fire, which may still include fire-colored objects after CS. Thus,
many researchers have captured color variations in pixel values via the single-level
and two-dimensional (2D) discrete wavelet transform (DWT), as depicted in Fig. 2.
Note that the color conversion from the YCbCr color space to the RGB color space
is performed after CS and the red component is further used for feature extraction.
In practice, the wavelet decomposition for an M × N arbitrary image is performed
by first applying one-dimensional (1D) decomposition low-pass and high-pass fil-
ters to the rows of the image, which generates two M× (N /2) sub-images. Then,
the 1D decomposition filters are applied to the columns of the two sub-images.
Among various Daubehices wavelets, we used a Daubehices 4 wavelet (i.e., db4)
in this study because it is effective for avoiding bad localizations. Coefficients of both
Daubechies 4 low-pass filter (h) and Daubechies 4 high-pass filter (g) are defined as
h = {−0.106, 0.0329, 0.0308,−0.1870,−0.0280, 0.6309, 0.7148, 0.2304} and g =
{−0.2304, 0.7148,−0.6309,−0.0280, 0.1870, 0.0308,−0.0329,−0.0106}, respec-
tively.

Since high-frequency information such as edges and texture around the fire is not
sensitive to lighting change and more prominent signatures can discriminate irregular
fire from the regular movement of fire-colored objects, the wavelet energy of high-
frequency sub-images provides a good representation of turbulent fire flicker, which
is calculated as follows [23]:

E(n) = 1

floor(M/2) × floor(N/2)

{
|LHn|2 + |HLn|2 + |HHn|2

}
, (6)

where E(n) is the normalized wavelet energy of the nth movie frame, and LHn , HLn ,
and HHn contain the horizontal, vertical, and diagonal high frequency of the nth
floor(M /2) × floor(N /2) sub-images resulting from the single-level wavelet decom-
position, respectively. E(n) is then used to train and test a SVM for early detection of
fire in movie streams.

123

An optimal many-core model 2281

F
ig
.2

D
ec
om

po
si
tio

n
pr
oc
es
s
of

th
e
si
ng
le
-l
ev
el
an
d
tw
o-
di
m
en
si
on
al
D
W
T

123

2282 J. Seo et al.

2.4 A SVM-based decision making (CLASSIFY)

To classify candidate pixels as fire or non-fire pixels, a support vector machine (SVM)
has been widely used since it offers high classification accuracy with limited training
data and does not require heuristic parameters for detecting fire pixels. The SVM is
a non-probabilistic binary classifier and its main goal is to find an optimal hyper-
plane that correctly separates the largest fraction of data points while maximizing
the distance between two classes on the hyper-plane. The SVM decision function is
defined as:

f (x) = sign

(
l∑

i=1

wi · k(x, xi) + b

)

, (7)

where wi are weights for outputs of each kernel, k() is a kernel, b is a bias term, l
is the number of support vectors of xi , and sign() determines the class membership
of x (i.e., +1 class and −1 class). The decision function is then used to measure how
much a pixel belonging to the fire class (e.g., +1 class) is different from the non-fire
class (e.g., −1 class). In this study, we use a one-dimension feature vector including
fire signatures to identify fire in movie streams as mentioned in Sect. 2.3. However,
since two classes (e.g., fire or non-fire) are not linearly separable, it is necessary to
find an optimal hyper-plane that can split the non-linear feature vector by mapping
it to a high-dimensional feature space. To address this issue, we use the radial basis
function (RBF) kernel, which is defined as follows:

k(x, y) = exp

(

−‖x − y‖2
2σ 2

)

for σ > 0, (8)

where x and y are input feature vectors, and σ is a parameter that determines the width
of the effective basis function, which affects the classification accuracy. In this study,
we experimentally set the standard deviation (σ) to 0.1 yielding high classification
performance. The input test value x and the support vectors xi obtained from a training
data set are non-linearly mapped features using the RBF kernel. A candidate fire pixel
is finally classified as either a real fire pixel if the result is 1 or a non-fire pixel if the
result is -1 using (7). To train the SVM, we build a training dataset that includes 200
wavelet energies from training fire pixels and 200 wavelet energies from fire-colored
moving pixels, respectively. Table 1 presents a summary of the experimental setup
used for the SVM in this study.

2.5 Accuracy evaluation of the multi-stage fire detection scheme

We implement the selected fire detection algorithm in MATLAB 2012b on an Intel
Quad-Core 3.4 GHz PC platform. Furthermore, five movies are used for evaluating
the accuracy of the fire detection algorithm, including 2,642 samples with dimensions
of 256×256 (1,301 samples containing fire and 1,341 samples containing non-fire),
as illustrated in Fig. 3.

123

An optimal many-core model 2283

Table 1 Summary of the
experimental setup used for the
SVM in this study

Parameters Values

Number of fire signatures to train the SVM 200

Number of non-fire signatures to train the SVM 200

Kernel RBF

σ Value for the RBF kernel 0.1

Number of support vectors 1×150

Number of weights 1×150

Table 2 presents accuracy comparison between the proposed multi-stage fire detec-
tion approach and four state-of-the-art fire detection approaches in terms of true posi-
tives (TP) and false negatives (FN). TP is the number of all frames that correctly detect
a real fire as a fire and the percentage of TP (PTP) is the overall fire detection rate.
Moreover, the FN is the number of all frames that detect a real fire as a non-fire and
the percentage of FN (PTN) is the overall false non-fire detection rate.

As shown in Table 2, the results indicate that average fire detection and false non-
fire detection rates of the proposed approach are 99.67 and 3.69%, respectively, which
are good enough for fire detection since they consistently increase the accuracy of fire
detection while decreasing the error of false fire detection in all movies. However, the
computational complexity of the fire detection algorithm may limit real-time process-
ing for early detection of fire. Table 3 shows the average computational times at each
stage for processing all the frames in a movie clip using the proposed multi-stage
fire detection scheme. Likewise, Table 4 compares average computational times for
processing all movie clips between the proposed fire detection scheme and the others.

As presented in Table 3, MRCD and CS require larger computational times of
the reference fire detection algorithm than those of FE and CLASSIFY due to their
per-pixel operations. Despite the fact that the proposed fire detection methodology
demands theminimum computational time (i.e., the average computational time for all
movie clips is about 220 ms), the computational complexity of the proposed approach
limits its use in real-time fire detection applications (i.e., 30 frames-per-second). Thus,
we propose a SIMD many-core computational model to meet the computational time
required for the real-time fire detection.

3 Parallel implementation of the multi-stage fire detection scheme
using a many-core model

This section includes the detailed description of the reference many-core model and
parallel implementation of the multi-stage fire detection scheme on it.

3.1 Many-core architecture

Themicroarchitecture of the reference many-core model, shown in Fig. 4, mainly con-
sists of a 2D processing element (PE) array and local memory [44]. In this study, the

123

2284 J. Seo et al.

F
ig
.3

E
xa
m
pl
es

of
te
st
m
ov
ie
s
us
ed

in
th
is
st
ud
y

123

An optimal many-core model 2285

Table 2 Fire detection accuracy of the proposed and other approaches

Movies (frames)

Movie 1 (500) Movie 2 (599) Movie 3 (199) Movie 4 (946) Movie 5 (393)

TP PTP (%) TP PTP (%) TP PTP (%) FN PFN (%) FN PFN (%)

Approach 1 [1] 480 96.00 560 93.49 188 94.47 37 3.91 28 7.12

Approach 2 [5] 480 96.00 574 95.83 186 93.47 28 2.96 26 6.62

Approach 3 [14] 474 94.80 571 95.33 190 95.48 22 2.33 22 5.60

Approach 4 [48] 474 94.80 568 94.82 189 94.97 22 2.33 26 6.62

Proposed 500 100.00 598 99.83 198 99.50 0 0.00 29 7.38

Table 3 Average computational time of each stage of the reference fire detection approach

Stages Unit Movie 1 Movie 2 Movie 3 Movie 4 Movie 5

MCRD [ms per frame] 150.904 149.723 157.701 149.512 155.331

CS 63.127 58.07 58.435 47.876 73.648

FE 6.729 6.425 6.339 5.89 6.233

CLASSIFY 0.437 0.397 0.39 0.398 0.403

OVERALL 221.197 214.615 222.85 203.676 235.615

Table 4 Average computational time per frame using fire detection approaches on an Intel Quad-Core 3.4
GHz PC platform with 256 × 256 resolution videos

Approach 1 [1] Approach 2 [5] Approach 3 [14] Approach 4 [48] Proposed

Average computational
times (s) per frame

0.36 1.17 0.89 1.1 0.22

PEs execute a set of instructions in lockstep fashion and are interconnected through a
mesh network. Furthermore, each PE supports different amounts of data for different
PE configurations to store distributed image data and temporary data produced dur-
ing processing. It has a reduced instruction set computer (RISC) data path with the
following characteristics:

• arithmetic logic unit (ALU) performs basic arithmetic and logic operations,
• multiply–accumulator unit (MACC) multiplies 32-bit values and accumulates
them into a 64-bit accumulator,

• barrel shifter unit (BSU) performs multi-bit logic/arithmetic shift operations,
• SLEEP unit activates/deactivates PEs based on local information,
• communication unit (COMM) allows PEs to communicate with their four nearest
neighbors (north, east, west, and south),

• a small amount of 32-bit word local memory and 16 32-bit three-ported general-
purpose registers are included.

123

2286 J. Seo et al.

Fig. 4 The reference many-core architecture

Fig. 5 a The tiled portion of the detector array is dedicated to a single PE and b the multi-level very-large-
scale integration enables CMOS image sensors to be grown on the top of the PEs to maximize the fill factor
[44]

A key feature of the reference many-core architecture compared to commercial
GPUs is its processing-in-place computation. This reduces datamovement since image
data are directly transferred into the PEs by utilizing local complementarymetal-oxide
semiconductor (CMOS) image sensors that provide area-I/O data streams to directly
access the PEs. Images are focused on an optical focal plane consisting of an array
of optoelectronic devices stacked above the PEs, as illustrated in Fig. 5. This allows
an entire image to be sampled and partitioned in parallel, reducing the overhead and
distributing the image data to each PE, while providing the bandwidth data required
by the fire detection algorithm [49]. The partitioned image data are stored in the pixel
memory of each PE for further processing.

The reference many-core model has a three-stage instruction pipeline (i.e., fetch,
decode, and execution) as illustrated in Fig. 6. In this three-state instruction pipeline,
each stage is completed within one cycle except the MACC, which demands two
cycles for its completion. More details about the instruction pipeline of the reference
many-core architecture are summarized as follows:

123

An optimal many-core model 2287

Fig. 6 Three-stage instruction pipeline of the reference many-core model

• At the fetch stage, the array control unit (ACU) fetches an instruction from instruc-
tion memory.

• At the decode stage, the instruction decoder of the ACU decodes the instruction
and determines if it is a scalar instruction or a vector instruction that is transmitted
to PEs.

• At the execution stage, scalar instructions are directly executed in the ACU,
whereas vector instructions simultaneously are executed by all the PEs under
the control of the ACU, where scalar instructions process the serial portion of the
algorithm while vector instructions represent the parallel portion of the algorithm
operating in the many-core architecture.

3.2 Parallel implementation using the reference many-core model

As mentioned in Sect. 2, the multi-stage fire detection algorithm is composed of back-
ground subtraction-based MCRD, CS for detecting fire-like regions using the YCbCr
colormodel, FEusing a normalizedwavelet energy, and aSVM-based decisionmaking
(CLASSIFY). According to Tables 2, 3, and 4, the multi-stage fire detection algorithm
achieves both high fire detection accuracy and a low false non-fire detection rate. How-
ever, its computational complexity does not meet real-time processing requirements.
Hence, we accelerate this fire detection algorithm by exploiting massive parallelism
inherent in it with the power of the reference many-core architecture. In the following
sub-sections, we give more details about the parallel implementation of this algorithm
on the reference many-core architecture.

A key system design issue of the many-core architecture for multimedia applica-
tions is to determine the ideal grain size that yields the highest performance and the

123

2288 J. Seo et al.

Table 5 A discrete set of the PE configurations and required memory space of each PE used in this study

NPE 16 64 256 1,024 4,096 16,384

IDPE ratios 4,096 1,024 256 64 16 4

Local memory/PE [bytes] 16,384 4,096 1,024 1,024 1,024 1,024

System memory [bytes] 518,144 518,144 518,144 1,304,576 4,450,304 17,033,216

lowest energy consumption. To explore the effects of grain sizes on the many-core
architecture, we introduce the IDPE ratio as a design variable that is the amount of
image data directly mapped to each PE. In this study, six different IDPE ratios are
used for evaluating the system performance and energy efficiency for real-time fire
detection. In addition, the local memory sizes vary with the IDPE. As the IDPE ratio
decreases, a smaller amount of local memory per PE is needed to store the image and
temporary data produced during this process. Thus, each PE configuration is com-
posed of different numbers of PEs and local and pixel memories. The IDPE ratio is
computed as SIMG/NPE, where SIMG is the image size (i.g., 256 × 256 in this study)
and NPE is the number of PEs, which is defined as NPE = 46−i , i = 0, 1, . . ., 5.
For completing the multi-stage fire detection algorithm, the local memory size per PE
required is calculated as:

MEMPE =
{
IDPE × (1 + 8

BANDdwt
) + α, if NPE < 256

2 × (NUMsv + NUMweights) + α, Otherwise
, (9)

where BANDdwt is the number of sub-images resulting from the single-level 2D
wavelet decomposition,α is a temporarymemory space used to store the computational
results during processing, NUMsv is the number of support vectors, and NUMweights
is the number of weights. As mentioned in Sect. 2.3, we perform the single-level 2D
wavelet decomposition to extract a fire signature that represents the nature of turbulent
flicker of fire. In addition, the wavelet decomposition can be accomplished by carrying
out convolution operations with Daubechies 4 wavelet decomposition filters. In (9),
IDPE × 32

BANDdwt
[bytes] corresponds to the amount of local memory of a PE to store

convolution results by the single-level wavelet decomposition, where BANDdwt is set
to 4 in this study. The necessary memory space for CLASSIFY is constant regardless
of the PE configuration while the required local memory of each PE for MCRD, CS,
and FE varies with the IDPE ratios (or PE configurations). Table 5 presents a discrete
set of PE configurations and the minimum local memory of each PE used in this study.

3.2.1 Parallel implementation: movement-containing region detection (MCRD)

Figure 7 depicts MCRD on a single PE of the reference many-core architecture, which
consists of the following two steps. Note that RGB(i, j) in Fig. 7 is the pixel intensity
in RGB color space at location (i, j), and G(i, j) is the gray-level pixel intensity at
location (i, j). Likewise, G(BGinit(i, j)), G(BGprev(i, j)), and G(BGcur(i, j)) are the

123

An optimal many-core model 2289

F
ig
.7

M
C
R
D
on

a
si
ng

le
PE

.a
B
ac
kg

ro
un

d
in
iti
al
iz
at
io
n
(s
te
p
1)

an
d
b
m
ov
em

en
t-
co
nt
ai
ni
ng

re
gi
on

de
te
ct
io
n
(s
te
p
2)

123

2290 J. Seo et al.

gray-level initial, previous, and current backgrounds at the location (i, j), respectively.
Likewise, the index k corresponds to

√
IDPE in this study.

• Step 1: This step is used to generate the initial background and is performed once
during the whole process for a movie. It is useful to store the background in the
local memory of each PE while all the frames of a movie are being processed;
this is because the gray-level background is iteratively updated and is used as a
reference for detecting movement-containing objects in the processing frame. In
step 1, an initial background is generated by repeating the process of loading a
single pixel of the

√
IDPE × √

IDPE partitioned image of the first frame in a
movie to a register of each corresponding PE from the pixel memory. In addition,
the distributed RGB pixel intensity is converted to a gray-level intensity, and the
converted gray-level intensity value is stored to a proper local memory space.

• Step 2: This step detects movement-containing regions in the processing frame.
Unlike the background, the other frames of the movie do not need to be stored
in local memory, which would only result in unnecessary memory usage. Our
approach is to load an RGB pixel of the partitioned frame into two registers of
each corresponding PE from the pixelmemory.One register stores an original RGB
intensity value while the other stores a gray-level intensity value of the distributed
RGB pixel which is used to determine whether or not it is a movement-containing
pixel by calculating an absolute value of the difference of the two intensity values
between the gray-level background and the processing frame. In addition, it is
compared to a predefined threshold that involves SLEEP instructions (e.g., SGT,
SGE, SLT, and SLE), which are used to deactivate PEs based on the results of the
comparison. In this study, once a distributed RGB pixel to a PE is determined as a
movement-containing pixel, its original RGB pixel intensity in one of the registers
is stored in the appropriate local memory space of the PE. Otherwise, a value of
0 is stored in the local memory of the PE. This is repeated until all the distributed
RGB pixels to the PE are processed. Due to the data-parallel nature of MCRD,
the execution time is expected to decrease linearly with the number of PEs in the
many-core system, which is inversely proportional to the IDPE. Likewise, MCRD
is able to maintain high system utilization for all PE configurations because of its
data-parallel nature.

3.2.2 Parallel implementation: color segmentation (CS)

In this study, we use YCbCr color information for color segmentation and determine
whether there are fire-colored objects in the candidate regions after MCRD using
(4). Figure 6 describes the process of color segmentation on the reference many-
core architecture, which is composed of the following two steps. Note that YCbCr(i ,
j) in Fig. 8 is the pixel intensity in the YCbCr color space at location (i, j) and
G(BGcur(i, j)) is the gray-level pixel intensity for the current background at location
(i, j). Furthermore, k corresponds to

√
IDPE in this study.

• Step 1: After MCRD on the reference many-core model, movement-containing
RGB pixel values are located in the local memory space of PEs and these RGB
pixel values are converted into the YCbCr color space. This color conversion is

123

An optimal many-core model 2291

F
ig
.8

C
S
on

a
si
ng

le
PE

123

2292 J. Seo et al.

performed by multiplying each of RGB components and the corresponding scalar
values and summing the products to predefined values in (3). To execute the color
conversion on the many-core architecture, the shift and arithmetic operations (e.g.,
LSH, MUL, and ADD) are needed. In this study, an arbitrary image pixel after
MCRD is considered as a fire-colored pixel by comparing each of the YCbCr com-
ponents with a corresponding mean value of the components in the YCbCr color
space. Thus, it is necessary to calculate cumulative sums of the three components
during the color space conversion, and finally to compute their mean values.

• Step 2: As mentioned earlier, more refined fire-colored pixels are detected based
on the condition in (4), and this requires SLEEP instructions (e.g., SGT, SGE, SLT,
and SLE) to deactivate PEs according to a result of comparison between each of
the YCbCr components and the mean values of the components in this study. Once
a movement-containing pixel in the YCbCr color space is determined as a fire-
colored pixel using (4), we reconvert the pixel value into RGB format for further
processing. Otherwise, we replace the pixel value with 0, which indicates that the
pixel is a spurious fire-like pixel. Like MCRD, color segmentation is highly data
parallel. Thus, high system utilization is maintained across the IDPE ratios.

3.2.3 Parallel implementation: feature extraction (FE)

Using the more refined fire-colored pixels, we extract fire signatures by calculating the
normalized wavelet energy for high-frequency sub-images resulting from the single-
level wavelet decomposition, which represents color variations due to the nature of
turbulent fire flicker. As described in Sect. 2.3, we used the single-levelwavelet decom-
position by convolving with Daubechies 4 low-pass and high-pass decomposition
filters in the rows and columns of the entry. During this process, inter-PE commu-
nication instructions (e.g., XFER NORTH, XFER EAST, XFER WEST, and XFER
SOUTH) are needed to compute wavelet coefficients around the boundary of the√
IDPE×√

IDPE partitioned image. Accordingly, as the IDPE increases (or the num-
ber of PEs decreases), a lower percentage of inter-PE communication instructions is
required. In addition, arithmetic instructions (MUL and ADD) are highly used regard-
less of the IDPE. Figure 9 gives an example of the single-level wavelet decomposition
on the reference many-core model. Since each PE in Fig. 9 concurrently performs
convolution operations with Daubechies 4 decomposition filters, it obtains sub-images
(i.e., LL, LH, HL, and HH) for the

√
IDPE × √

IDPE partitioned image after color
segmentation. Thus, data rearrangement is needed to locate sub-images resulting from
the

√
IDPE×√

IDPE partitioned image in the upper left (LL), upper right (LH), lower
left (HL), and lower right (HH) quadrants, and this requires a tremendous number of
inter-PE communication instructions. Figure 10 illustrates more details about the data
rearrangement process for completing the single-level wavelet decomposition.

Once the single-levelwavelet decomposition process is completed,wefinally calcu-
late the normalized wavelet energy by activating PEs containing high-frequency sub-
images (i.e., LH, HL, and HH). This requires a large number of arithmetic instructions
(i.e., MUL and ADD) to compute local wavelet energies as well as communication
instructions to broadcast the local wavelet energies to neighboring PEs. Despite the
fact that a number of communication and SLEEP instructions are needed to complete

123

An optimal many-core model 2293

F
ig
.9

Si
ng

le
-l
ev
el
w
av
el
et
de
co
m
po

si
tio

n
on

th
e
re
fe
re
nc
e
m
an
y-
co
re

m
od

el
,w

he
re

k
co
rr
es
po

nd
s
to

√ ID
PE

123

2294 J. Seo et al.

F
ig
.1

0
D
at
a
re
ar
ra
ng

em
en
tp

ro
ce
ss

fo
r
co
m
pl
et
in
g
th
e
si
ng

le
-l
ev
el
w
av
el
et
de
co
m
po

si
tio

n,
w
he
re

k
is

√ ID
PE

123

An optimal many-core model 2295

the single-level wavelet transform, the execution time is expected to decrease with the
number of PEs in the system due to the data-parallel nature of wavelet decomposition.

3.2.4 Parallel implementation: a SVM-based decision making (CLASSIFY)

To classify a candidate fire pixel as either a real fire-containing pixel or a non-fire-
containing pixel, we use the SVMwith theRBFkernel to dealwith non-linear property.
However, the reference many-core architecture does not involve special units to accel-
erate transcendental instructions such as square roots and exponential functions. Thus,
we use a Taylor series for the exponential term of the RBF kernel in this study:

ex =
∞∑

n=0

xn

n! , (10)

where x is an input of the exponential function and n! is the denominator in the infinite
sum, where the n is the only parameter to be determined. Although larger values of
n offer more accurate results, it is necessary to select a suitable value of n to avoid
high computational complexity. In this study, we introduce an evaluation metric which
is a normalized error to select an appropriate value of n satisfying a certain level of
the difference between EXPexpfunc and EXPtaylor, where EXPexpfunc is an exponential
value calculated from the exponential function, exp(), in MATLAB and EXPtaylor is
an exponential value computed using (10). The evaluation metric, Error, is defined as
follows:

Error =
∣
∣
∣
∣
EXPexpfunc − EXPtaylor

EXPexpfunc

∣
∣
∣
∣ . (11)

According to our experimental results, the difference between input patterns and sup-
port vectors is mostly in the range from −20 to −10. Thus, we set the input to the
exponential function as a value in the range from −20 to −19 at intervals of 0.2 and
measure error using (11) while varying n. Figure 11 shows the experimental results,
and we select the minimum value of n which is 68 in this study.

Although the SVM is implemented on the many-core architecture, the speedup
can be lower than that of MCRD and FE since it is difficult to exploit the massive
parallelism inherent in the SVM. Figure 12 pictorially illustrates how the SVMworks
on the many-core architecture, where each PE calculates the inner term of � in (7)
and transfers its own result to the left-top PE by communicating with its neighboring
PEs. The left-top PE finally classifies a candidate fire pixel as a real fire or non-fire by
summarizing all results from the other PEs and determining if the summarized result
is either +1 or −1. In this study, we obtain 150 support vectors (i.e., the dimension
of xi in (7) is 150) as well as 150 weights (i.e., the dimension of wi in (7) is 150),
and a value for the bias term from the training data. Thus, we can achieve the highest
parallelismwhen all 150 PEs are utilized. Each PE computeswi*k(x , xi)+b in (7)with
corresponding parameters (e.g., corresponding support vectors and weights) that are
already stored in the local memory of the PEs. This results in lower system utilization
when the number of PEs exceeds 64 (e.g., PEs = 256, 1,024, 4,096, and 16,384)

123

2296 J. Seo et al.

F
ig
.1
1

M
ea
su
ri
ng

er
ro
rs
w
ith

va
ry
in
g
nu

m
be
rs
of

n
fo
rc
er
ta
in
in
pu

tv
al
ue
s.
T
he

‘d
iff
’d

en
ot
es

th
e
di
ff
er
en
ce

be
tw
ee
n
th
e
in
pu
tp
at
te
rn
s
an
d
su
pp
or
tv
ec
to
rs
,w

hi
ch

as
su
m
es

th
at
th
e
di
ff
er
en
ce
s
ar
e
in

th
e
ra
ng

e
fr
om

−2
0
to

−1
9
at
0.
2
in
te
rv
al
s.
T
he

‘d
if
f’
is
ut
ili
ze
d
as

an
in
pu

to
f
th
e
ex
po

ne
nt
ia
lf
un

ct
io
n

123

An optimal many-core model 2297

Fig. 12 The SVM on the reference many-core architecture. a NPE = 256, b NPE = 64, and c NPE = 16,
where the index ‘loop’ is the dimension of support vectors

while yielding higher execution performance to perform the SVM on the many-core
architecture.

4 Experimental results

To identify ideal grain sizes of the reference many-core model, this study explores the
impact of IDPE ratios in terms of execution time and energy efficiency. In this section,
analytical results are given below.

4.1 Simulation methodology and evaluation metrics

In Fig. 13, a simulation methodology infrastructure in this study is divided into
three levels: application, architecture, and technology. At the application level, an
instruction-level many-core simulator (see Fig. 13a) is utilized to profile execution
statistics such as the cycle count, dynamic instruction frequency, and system utiliza-
tion for six different PE configurations by retargeting the fire detection algorithm for
each configuration based on the architecture and its execution properties. At the archi-
tectural level, the Xilinx ISE Design Suite 14.2 is used to generate register–transfer
level (RTL) code for each function unit of the reference many-core architecture and
to validate its functionality. At the technology level, RTL-to-gates synthesis is carried
out by the Synopsys Design Compiler with TSMC 28 nm technology. As a result of
TRL-to-gates synthesis, we obtain power consumption of each functional unit of the
many-core architecture. Further, a design space analysis tool collects and combines
all the parameters obtained from the application, architecture, and technology levels
to determine execution time and energy efficiency for each PE configuration.

In this study, we select execution time and energy efficiency as the evaluation
metrics for determining an optimal design point among six different configurations,

123

2298 J. Seo et al.

F
ig
.1

3
a
A
sc
re
en
sh
ot

of
th
e
in
st
ru
ct
io
n-
le
ve
lm

an
y-
co
re

si
m
ul
at
or
,b

si
m
ul
at
io
n
m
et
ho

do
lo
gy

in
fr
as
tr
uc
tu
re
,a
nd

c
an

ex
am

pl
e
of

R
T
L
sc
he
m
at
ic
of

a
si
ng
le
PE

us
in
g
th
e

X
ili
nx

IS
E
to
ol

123

An optimal many-core model 2299

Table 6 Summary of evaluation metrics

Execution time texec = Nexecuted
fclk

System utilization U = Nexecuted
Nissued

× 100 [%]

Energy efficiency ηE = 1
texec×Energy

[
1

s·Joules
]

Nexecuted is the total number of executed instructions on each PE, Nissued is the total number of issued
instructions, fclk is the clock frequency, and energy is the system energy required to complete the reference
fire detection algorithm in 28 nm CMOS technology

which delivers real-time execution of the fire detection algorithm while maximizing
energy efficiency. Reduction in energy requirements are as important as improved
performance (or execution time) for portable electronic products. In addition, efficient
system utilization is a dominant concern for the design of portable supercomputer
design. Table 6 defines these evaluation metrics for the many-core model.

4.2 Execution time

Figure 14 shows average execution time per frame of all the movies for each task of
the multi-stage fire detection algorithm versus IDPE. As expected, the execution time
of each task monotonically decreases with the IPDE due to the increase in available
PEs and the data-parallel nature of each task. However, the slopes of the execution
time, which indicate speedup efficiency, are not equal. As mentioned in Sects. 3.2.1,
3.2.2, and 3.2.3, MCRD, CS, and FE are highly data-parallel. Thus, the execution
time of these tasks linearly decreases as the IDPE decreases (or as the number of
PEs increases). As discussed in Sect. 3.2.4, CLASSIFY generally requires a small
number of arithmetic and shift operations compared to those of MCRD, CS, and FE.
Thus, the slope of the execution time for CLASSIFY is almost flat for all of the
PE configurations. To meet real-time requirements for online fire detection, a single
movie frame should be processed within 33 ms (30 frames-per-second). The reference
many-core architecture satisfies this requirement with all of the IDPE ratios.

4.3 System utilization

To achieve the level of performance required by its intended application domain, it is
critical to maintain high system utilization. A presented in Table 6, system utilization
is defined as the ratio between the number of active PEs and the total number of PEs
to complete a given task and Fig. 15 illustrates average system utilization of all the
movies at different IDPE ratios. As the IDPE ratios vary, MCRD, CS, and FEmaintain
higher system utilization than CLASSIFY, as shown in Fig. 15 by exploiting massive
parallelism inherent in them. In addition, we observe that for IDPE <256, a decrease
in system utilization for FE occurs due to the increased impact of communication
overhead between collaborating neighboring PEs. Likewise, the system utilization for

123

2300 J. Seo et al.

Fig. 14 Average execution time per frame of all the movies for each task of the multi-stage fire detection
algorithm with different PE configurations

Fig. 15 Average system utilization of all the movies at different IDPE ratios

CLASSIFY dramatically decreases at IDPE<1,024 due to the nature of the algorithm
as described in Sect. 3.2.4.

4.4 Energy efficiency

Energy efficiency is the task throughput achieved per unit of Joule. Figure 16 shows
energy efficiency for each task of the multi-stage fire detection algorithm with all the
movies used in this study. Increasing energy efficiency equivalently implies minimiz-
ing power dissipation, which translates into minimizing the energy per operation.

Since the purpose of this study is to identify the most efficient design point that
yields the highest performance as well as energy efficiency, the shape of the energy
efficiency curves is significant. In practice, energy efficiency can vary with the content
of movie frames, and it correlates with the execution time and energy consumption.

123

An optimal many-core model 2301

F
ig
.1

6
E
ne
rg
y
ef
fic
ie
nc
ie
s
of

ea
ch

ta
sk

of
th
e
m
ul
ti-
st
ag
e
fir
e
de
te
ct
io
n
al
go
ri
th
m

w
ith

fiv
e
di
ff
er
en
tm

ov
ie
cl
ip
s

123

2302 J. Seo et al.

To analyze energy efficiency, we exploit average execution time to complete all the
movies at different PE configurations. An interesting observation in Fig. 16 is that the
shape of curves is very similar. Although the energy consumption varies per frame
as shown in Fig. 17, the variation in energy consumption is very small, which cannot
affect the shape of the energy efficiency curves in Fig. 16. As expected, more energy
consumption of the reference many-core architecture is required to process Movies
1–3 because these movies include fire pixels and thus require additional operations
such as color conversion and inter-PE communications to broadcast temporary results.
Meanwhile,Movie 4 ismainly composed of scenes including a red-colored car, and the
fire detection algorithm recognizes these red-colored objects as candidate regions of
fire, requiring high energy consumption at the frame including the red-colored objects.
In Movie 5, both the fluorescent light in tunnel and car brake lights are candidate
regions of fire. However, a bus slips on the road between the 100th frame and the
120th frame, and the scenery takes a large portion of those frames, which results in
reducing the candidate regions of fire. After the 120th frame inMovie 5, the brakes of a
red-colored car are shown for several frames and this causes high energy consumption
of the many-core system.

Overall, the most efficient design point is achieved at 64 IDPE (or NPE = 1,024) in
terms of computational performance and energy efficiency.

4.5 Performance comparison with a commercial GPGPU

Our analyses indicate that 64 IDPE (or 1,024 PEs) provides themost efficient operation
for the multi-stage fire detection algorithm in terms of execution time and energy effi-
ciency.Table 7 compares the performanceof the selected optimalmany-core configura-
tion and that of theNvidiaGeForceGTX480 commercial GPU system,which includes
480 processing cores. Even though a comparison between this optimal many-core con-
figuration and the commercial GPU involves unavoidable errors, the purpose of this
study is to show the potential of the most efficient many-core configuration enabling
real-time fire detection rather than to conduct a precise performance comparison.

To implement themulti-stage fire detection algorithmon theGPU,we designed four
kernels as follows: mcrdKernel for movement-containing region detection, csKernel
for color segmentation, feKernel for fire feature extraction, and classifyKernel for
decision making if there is a fire or a non-fire in a processing frame in a movie
clip. Since both mcrdKernel and csKernel are fully parallelizable, this GPU-based
parallel implementation greatly improves performance. However, both feKernel and
classifyKernel are not parallelizable on the GPU. For example, the feKernel should
calculate the sum of wavelet energies for high-frequency sub-images resulting from
the single-level wavelet decomposition to calculate the normalized wavelet energy. In
this study, we exploited a parallel reduction that builds a balanced binary tree of the
input data and sweeps it from the top over data addition to exploit massive parallelism
when calculating the sum of wavelet energies with utilization of the shared memory
access. In addition, both execution time and energy efficiency are averaged over the
five movies for the purpose of performance comparison.

123

An optimal many-core model 2303

F
ig
.1

7
E
ne
rg
y
co
ns
um

pt
io
n
pe
r
fr
am

e
of

al
lt
he

m
ov
ie
s

123

2304 J. Seo et al.

Table 7 Performance comparison between the optimal many-core configuration and Nvidia GPU for the
multi-stage fire detection algorithm

Parameters Units NVIDIA GeForce GTX
480 running at 1,401MHz

Proposed many-core
running at 400 MHz

Execution time [ms] 2.5966 0.69

Average power [Watts] 98 0.14

Energy efficiency [1/(s · Joules)] 1,513.435 15,002,850.5

The experimental result indicates that the optimalmany-core processor outperforms
the GPU in terms of execution time and energy efficiency: 3.8- and 9,913-fold better
than the GPU in execution time and energy efficiency, respectively.

4.6 A prototyping system for the multi-stage fire detection

Figure 18a shows a block diagram of the prototyping system that includes 16 PEs,
a camera controller, a liquid crystal display (LCD) controller, and a direct memory
access (MDA) unit, and Fig. 18b illustrates a snapshot of the prototyping system using
the HUINS system-on-a-chip (SoC) master 3 board. This prototyping system executes
the fire detection algorithms as follows:

• Step 1: The camera controller transfers image data from the CMOS camera to
image memory using a memory write operation;

• Step 2: The DMA unit accesses image data and transfers these data to PE’s pixel
memory;

• Step 3: The ACU fetches and decodes both scalar and vector instructions in the
program memory and distributes the vector instructions to PEs;

• Step4: PEs execute the givenfire detection application in parallel and the processed
image data are stored in the PE’s pixel memory;

• Step 5: The LCD controller finally transfers the processed image data to the thin-
film-transistor (TFT)-LCD.

In particular, Table 8 presents design parameters to implement 16 PEs in the Xilinx
Virtex-4 FPGA device and Table 9 shows its synthesis results using the Xilinx ISE
Design Suite 14.2.

5 Conclusions

The demand for high-performance and low-power fire detection systems has grown
rapidly in recent years and has motivated research on many-core architectures includ-
ingGPUs. In this study, we present themulti-stage fire detection approach that consists
of background subtraction-based MCRD, CS for detecting fire-like regions using the
YCbCr color model, FE using the normalized wavelet energy, and a SVM-based deci-
sion making to identify a fire in a processing frame of a movie clip. While this multi-
stage fire detection algorithm achieves both fire detection and false non-fire detection

123

An optimal many-core model 2305

Fig. 18 a A block diagram of the prototyping system including 16 PEs, a camera controller, a LCD
controller, and a DMA unit for the fire detection algorithm, b a snapshot of the multi-core prototyping
system using the HUINS SoC master 3 board

Table 8 Design parameters of
the multi-core system including
16 PEs

Design parameters Values

Image size 256 × 256

System size 16 PEs

Number of pixel per PE 60 × 50

Clock frequency 50 MHz

Interconnection network Mesh

Numbers of integer ALU/integer
MACC/barrel shifter/SLEEP
unit/integer communication unit

1/1/1/1/1

Pixel memory size per PE 8 kbytes

Local memory size per PE 16 kbytes

123

2306 J. Seo et al.

Table 9 Synthesis results of the
multi-core system for online fire
detection

Used (utilization) Available

Number of occupied slices 9,123 (34 %) 26,624

Total number of four input
look-up tables (LUTs)

16,171 (30 %) 53,248

Total number of slice registers 2,740 (5 %) 53,248

Number of bonded IOBs 132 (20 %) 640

Number of RAMB16s 157 (98 %) 160

Number of DSP48s 20 (31 %) 64

Number of BUFG 3 (9 %) 32

rates of 99.67 and 3.69 %, respectively, its average execution time is 213.95 ms per
frame, which limits its use in real-time applications (33 ms or 30 frames-per-second).
Thus, this paper proposes the SIMDmany-core approach to support this computation-
ally complex algorithm. In addition, this study explores the effects of various IDPE
ratios in terms of system performance and energy efficiency. In this study, six IDPE
ratios are used to identify the most efficient PE configuration among them, which pro-
vides the highest performance as well as the highest energy efficiency enabling online
fire detection while maximizing energy efficiency. Experimental results indicate that
IDPE = 64 (or NPE = 1,024) provides the most efficient operation for the fire detec-
tion algorithm. In addition, the optimal many-core model outperforms a commercial
GPU in terms of execution time and energy efficiency. To guarantee the superiority of
the optimal many-core model for fire detection, we will further compare the perfor-
mance and efficiency with FPGA and customized design, DRRA, and ASIC in near
future.

Acknowledgments This workwas supported by the National Research Foundation of Korea (NRF) Grant
funded by the Korea government (MEST) (No. NRF-2013R1A2A2A05004566).

References

1. Celik T, Demirel H (2009) Fire detection in video sequences using a generic color model. Fire Safety
J 44(2):147–158

2. Qiu T, Yan Y, Lu G (2012) An autoadaptive edge-detection algorithm for flame and fire image process-
ing. IEEE Trans Instrum Meas 61(5):1486–1493

3. Ko BC, Ham SJ, Nam JY (2011) Modeling and formalization of fuzzy finite automata for detection of
irregular fire flames. IEEE Trans Circuits Syst Video Technol 21(12):1903–1912

4. Li M, Xu W, Xu K, Fan J, Hou D (2013) Review of fire detection technologies based on video image.
J Theo Appl Inf Technol 49(2):700–707

5. KoBC,CheongKH,Nam JY (2009) Fire detection based on vision sensor and support vectormachines.
Fire Safety J 44(3):322–329

6. Jin H, Zhang RB (2009) A fire and flame detecting method based on video. In: Proceedings of 2009
International Conference on Machine Learning Cybernetics Baoding, pp 2347–2352

7. Rinsurongkawong S, Ekpanyapong M, Dailey MN (2012) Fire detection for early fire alarm based
on optical flow video processing. In: Proceedings of 2012 9th International Conference Electrical
Engineering Electronics Computer Telecommunications and Information Technology, Phetchaburi, pp
1–4

123

An optimal many-core model 2307

8. Dedeoglu Y, Toreyin BU, Gudukbay U, Cetin AE (2005) Real-time fire and flame detection in video.
In: Proceedings of IEEE International Conference Acoustic Speech Signal Processing, Philadelphia,
pp 669–672

9. Wang H, Finn A, Erdinc O, Vincitore A (2013) Spatial-temporal structural and dynamics features
for video fire detection. In: Proceedings 2013 IEEE Workshop on Applications of Computer Vision,
Clearwater Beach, pp 513–519

10. Chen J, He Y, Wang J (2010) Multi-feature fusion based fast video flame detection. Bldg Envir
45(5):1113–1122

11. Gunay O, Tasdemir K, Toreyin BU, Enis A (2010) Fire detection in video using LMS based active
learning. Fire Technol 463:551–577

12. Kolesov I, Karasev P, Tannenbaum A, Haber E (2010) Fire and smoke detection in video with opti-
mal mass transport based optical flow and neural networks. In: Proceedings 2010 IEEE International
Conference Image Processing, Hong Kong, pp 761–764

13. Ko BC, Cheong K-H, Nam J-Y (2010) Early fire detection algorithm based on irregular patterns of
flames and hierarchical Bayesian networks. Fire Safety J 45(4):262–270

14. Borges PVK, Izquierdo E (2010) A probabilistic approach for vision-based fire detection in videos.
IEEE Trans Circuits Syst Video Technol 20(5):721–731

15. Hamme DV, Veelaert P, Philips W, Teelen K (2010) Fire detection in color images using Markov
random fields. Lect Notes Comput Sci 6475:88–97

16. Celik T (2010) Fast and efficient method for fire detection using image processing. ETRI J 32(6):881–
890

17. Truong TX, Kim J-M (2012) Fire flame detection in video sequences using multi-stage patten recog-
nition techniques. Eng Appl AI 25(7):1365–1372

18. Morerio P, Marcenaro L, Regazzoni CS, Gera G (2012) Early fire and smoke detection based on colour
features and motion analysis. In: Proceedings 2012 IEEE International Conferene Image Processing,
Orlando, pp 1041–1044

19. Santana P, Gomes P, Barata J (2012) A vision-based system for early fire detection. In: Proceedings
2012 IEEE International Conference Sytsems, Man and Cybernetics, Seoul, pp 739–744

20. Kang M, Tung TX, Kim J-M (2013) Efficient video-equipped fire detection approach for automatic
fire alarm systems. Opt Eng 52(1):1–9. doi:10.1117/1.OE.52.1.017002

21. Lee B, Han D (2007) Real-time fire detection using camera sequence image in tunnel environment.
Lect Notes Comput Sci 4681:1209–1220

22. Ha C, HwangU, JeonG, Cho J, Jeong J (2006) Vision-based fire detection algorithm using optical flow.
In: Proceedings 2012 International Conference Comput Intell. Softw. Int. Syst., Palermo, pp 526–530

23. Toreyin BU, Dedeoglu Y, Gudukbay UI, Cetin AE (2006) Computer vision based method for real-time
fire and flame detection. Pattern Recogn. Lett. 27(1):49–58

24. Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model
in video sequences. J Vis Commun Image Rep 18(2):176–185

25. Wang Y, Wang D, Shi G, Zhong X (2011) GPR simulation for the fire detection in ground coal mine
using FDTD Method. Commun Comput Inf Sci 159:310–314

26. Qi X, Ebert J (2009) A computer vision based method for fire detection in color videos. Int J Imaging
2(9):22–34

27. Marbach G, LoepfeM, Brupbacher T (2006) An Image processing technique for fire detection in video
images. Fire Safety J 41(4):285–289

28. Hablboglu YH, Gunay O, Cetin AE (2012) Covariance matrix-based fire and flame detection method
in video. Mach Vis Appl 23(6):1103–1113

29. Zhao J, Zhang Z, Han S, Qu C, Yuan Z, Zhang D (2011) SVM based forest fire detection using static
and dynamic features. Comput Sci Inf Syst 8(3):821–841

30. Wang H, Li D, Wang Y, Yang W (2010) Fire detecting technology of information fusion using support
vector machines. In: Proc. 2010 Intl. Conf. AI Comput. Intell., Sanya, pp 194–198

31. Nguyen T, Kim J (2013) Multistage optical smoke detection approach for smoke alarm systems. Opt
Eng 52(5):1–12

32. Wu X, Jhang JQ, Huang X, Liu DL (2012) GPU-accelerated real-time IR smoke screen simulation and
assessment of its obscuration. IR Phys Technol 55:150–155

33. Park IK, Singhal N, Lee MH, Cho S, Kim CW (2011) Design and performance evaluation of image
processing algorithms on GPUs. IEEE Trans Parallel Distrib Syst 22(1):91–104

123

http://dx.doi.org/10.1117/1.OE.52.1.017002

2308 J. Seo et al.

34. Kim Y, Kang M, Kim J-M (2013) Exploration of optimal many-core models for efficient image seg-
mentation. IEEE Trans Image Process 22(5):1767–1777

35. Choi J, KangM, Kim Y, Kim C-H, Kim J-M (2013) Design space exploration in many-core processors
for sound synthesis of plucked string instruments. J Parallel Distrib Syst 73(11):1506–1522

36. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J
Eurogr Assoc 8(1):3–12

37. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-
and-data-decomposition approach. J Parallel Distrib Syst 10:188–192

38. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor—theoretical properties and algo-
rithms. Parallel Comput 21:1783–1805

39. Arabnia HR, Smith JW (1993) A Reconfigurable interconnection network for imaging operations
and its implementation using a multi-stage switching box. In: Proc. Calgary, June, New Horizons
Supercomput. Symp., pp 349–357

40. Hamzacebi H (2011) CUDA based implementation of flame detection algorithms in day and infrared
camera videos. M.S. thesis, Dept. Elect. Electron. Engr., Bilkent Univ., Ankara, Turkey

41. Xiao S, Feng W-C (2010) Inter-block GPU communication via fast barrier synchronization. In: Proc.
2010 IEEE Intl. Symp. Parallel Distrib. Process Atlanta 19–23:1–12

42. Feng WC, Xiao S (2010) To GPU synchronize or not GPU synchronize? In: Proc. 2010 IEEE Intl.
Symp. Circuits Systs., Paris, pp. 3801–3804

43. Lee J, Sathisha V, SchulteM, Compton K, KimNS (2011) Improving throughput of power-constrained
GPUs using dynamic voltage/frequency and core scaling. In: Proc. 2011 Intl. Conf. Parallel Arch.
Comp. Techn., Galveston, pp 111–120

44. Gentile A, Sander S, Wills L, Wills S (2004) The impact of grain size on the efficiency of embedded
SIMD image processing architectures. J Parallel Distrib Comput 64:1318–1327

45. Patel P, Tiwari S (2012) Flame detection using image processing technique. Int J Comput Appl
58(18):13–16

46. Kurup AR (2012) Vision based fire flame detection system using optical flow features and artificial
neural network. Int J Sci Res (article ID OCT14677) pp 2161–2168

47. Millan-Garcia L, Sanchez-Perez G, Nakano M, Toscano-Medina K, Perez-Meana H, Rojas-Cardenas
L (2012) An early fire detection algorithm using IP cameras. Sensors 12(15):5670–5686

48. Toreyin BU et al (2006) Computer vision-based method for real-time fire and flame detection. Pattern
Recog Lett 27(1):49–58

49. Gamal AE, Eltoukhy H (2005) CMOS image sensors. IEEE Trans. Circuits Devices Mag 21(3):6–20

123

	An optimal many-core model-based supercomputing for accelerating video-equipped fire detection
	Abstract
	1 Introduction
	2 Multi-stage fire detection scheme and its validation
	2.1 Movement-containing region detection (MCRD) based on background subtraction
	2.2 Color segmentation for detecting fire-like regions
	2.3 Feature extraction (FE) via the single-level wavelet decomposition
	2.4 A SVM-based decision making (CLASSIFY)
	2.5 Accuracy evaluation of the multi-stage fire detection scheme

	3 Parallel implementation of the multi-stage fire detection scheme using a many-core model
	3.1 Many-core architecture
	3.2 Parallel implementation using the reference many-core model
	3.2.1 Parallel implementation: movement-containing region detection (MCRD)
	3.2.2 Parallel implementation: color segmentation (CS)
	3.2.3 Parallel implementation: feature extraction (FE)
	3.2.4 Parallel implementation: a SVM-based decision making (CLASSIFY)

	4 Experimental results
	4.1 Simulation methodology and evaluation metrics
	4.2 Execution time
	4.3 System utilization
	4.4 Energy efficiency
	4.5 Performance comparison with a commercial GPGPU
	4.6 A prototyping system for the multi-stage fire detection

	5 Conclusions
	Acknowledgments
	References

