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ABSTRACT

We present a set of experiments with a video OCR system (VOCR) tailored for video information retrieval
and establish its importance in multimedia search in general and for some specific queries in particular. The
system, inspired by an existing work on text detection and recognition in images, has been developed using
techniques involving detailed analysis of video frames producing candidate text regions. The text regions are
then binarized and sent to a commercial OCR resulting in ASCII text, that is finally used to create search
indexes. The system is evaluated using the TRECVID data. We compare the system’s performance from an
information retrieval perspective with another VOCR developed using multi-frame integration and empirically
demonstrate that deep analysis on individual video frames result in better video retrieval. We also evaluate
the effect of various textual sources on multimedia retrieval by combining the VOCR outputs with automatic
speech recognition (ASR) transcripts. For general search queries, the VOCR system coupled with ASR sources
outperforms the other system by a very large extent. For search queries that involve named entities, especially
people names, the VOCR system even outperforms speech transcripts, demonstrating that source selection for
particular query types is extremely essential.
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1. INTRODUCTION

Analysis, indexing and retrieval of multimedia content requires a combination of various techniques. Other
than speech recognition, image understanding, natural language processing and search strategies, video OCR
(VOCR) systems have been observed to play a key role in multimedia information retrieval tasks.1–3 Especially
in broadcast news retrieval, appending overlay text to the index helps improve the search results by a great
extent. The influence of the VOCR is more pronounced in case of queries involving named entities like names
or locations. This is quite apparent because the text on a news screen usually denotes the salient entities that
constitute the news item. One such example is shown in Figure 1 where a typical VOCR identifies a candidate
text region by a series of image processing steps. After some post processing steps on the region, a binarized
version of it (shown in top right) is passed on to an off-the-shelf OCR that identifies the text. This text is added
to the index of transcripts used for retrieval purposes.

In the current work, we present a series of experiments with a video OCR system meant for a multimedia
processing pipeline, and demonstrate that the system has improved search accuracy by a large extent. The novelty
of the framework lies in the effective use of per image text extraction in multimedia retrieval. We compare the
present system’s retrieval performance with an earlier VOCR system,4 that relies on multi-frame integration and
combines evidence about a particular text region from consecutive or temporally proximate frames. Instead of
multi-frame integration, the described system focuses on deeper analysis on individual frames, and is inspired by
a work5, 6 that takes advantage of the structure of Roman script among other characteristics to efficiently extract
candidate text regions from an individual image frame. We found that a multi-frame integration based approach
would miss relevant overlay text when the text moves or flashes for a moment on the screen. To corroborate, our
results exhibit that the VOCR system produces better accuracies for video retrieval – both from the perspective
of recall and mean average precision, when the search index is built from the OCR alone. We include ASR
transcripts to measure the effect of various sources over retrieval performance, and achieve a set of interesting
results. Over and above general queries, we empirically show that the VOCR enhances retrieval accuracy for
queries containing named entities and interestingly plays an even more significant role than speech transcripts,
that form the primary component of the search index for video retrieval. All experiments have been performed
on publicly available TRECVID 2005 and 2006 data.
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Figure 1. A screenshot from a broadcast news video. A typical image segmentation step extracts a prospective region of
the image containing text. Running an OCR on the extracted region results in some text, that may be used for retrieval
tasks.

The approach taken in the present work can be categorized into a top-down approach of text recognition from
images. There are primarily two broad phases of the entire task: a text detection phase and a text recognition
phase. In the first phase, for a given image frame a cascade of various filters are applied to detect candidate text
regions. A text localization step is adopted that extracts potential blocks of text on the image with considerable
precision and high recall. To filter the text blocks from the candidates produced at this stage, various options
can be considered. A machine learning approach is natural;5 however, for reasons elaborated later in detail we
rather choose to filter them using heuristics as much as possible. In the text recognition phase, candidate blocks
of text are segmented to form a binary image, and fed into a commercial OCR to produce the final text.

The rest of the paper is organized as follows. Section 2 focuses on relevant previous work in the literature.
Section 3 describes the VOCR framework, the algorithms for extracting text regions from individual frames and
the techniques resulting in the actual text used for indexing the news video files. Section 4 enumerates the
experiments and results achieved, followed by Section 5, where we conclude with a note about future work.

2. RELATED WORK

Efforts in the area of text extraction from images date back to research7 involving localization of text on covers
of journals and CDs. In this work it was assumed that text is concentrated in regions with high horizontal
variance, possessing properties that can be exploited using connected component analysis. More relevant work8

exist in the literature where techniques for skimming videos for significant segments were investigated using
text detection techniques. On image frames, vertical edges were detected using a predefined template, and
then they were grouped using a smoothing step. However, for both these methods if there is high horizontal
contrast in the background, many false alarms may be produced. Texture segmentation based methods9, 10

involve computation of texture features at each pixel from the derivatives of the image at different scales. In this
work, pixels are classified into three classes in the feature space. The highest energy class denotes text, the other
two indicate non-text and uncertainty. The segmentation method however is not robust to background noises
and the texture feature computation is expensive. There have been research where candidate text regions are
first located directly in the DCT compressed domain, and then they are reconstructed further refinement in the
spatial domain.11Other related work12 describes the detection of the top and bottom lines of the text occurring
on the image, facilitating the localization of text.

In the domain of text based video retrieval, there has been a series of work where text extracted from the
image frames constituting the video have been used for retrieval purposes. In a work13, 14 on real video data,
the authors have presented techniques of using approximate match and expansion of word semantics applied to
the OCR outputs. However, the evaluation was not done on a standard dataset and other sources of the search
index were not considered and compared. Multi-frame integration based methods for VOCR and applied to
multimedia retrieval tasks2 have been examined. We compare the developed VOCR with the one mentioned in
this previous work, and we get significant improvements. Also, the work reports the use of every 3rd frame for
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Figure 2. (a) shows an image frame from a video file. (b) denotes the image with horizontal edges (c) denotes the image
with vertical edges.

analysis, while we use one frame per millisecond that makes the processing step much faster. Text localization
and segmentation methods have been described in relevant work15, 16 that make use of information integrated
from consecutive frames; however again, extensive evaluation on standard data over a set of varied queries with
different mix of sources have not been considered.

3. APPROACH

In this section, we describe the approach taken for extracting text from a video file. After sampling from a given
video file at regular time intervals, each image frame is considered for text extraction. The method can broadly
be divided into two major steps - text detection and text recognition. The following subsections describe these
two steps in detail.

3.1 Text Detection

The step of text detection from an individual frame extracts candidate text regions using various image processing
techniques. The algorithms that constitute this step are inspired by a previous work on extraction of overlay
text from image frames.5, 6 The entire task of detection of text can further be subdivided into two steps - text
localization and text verification, which we describe in the rest of this subsection.

3.1.1 Text Localization

The text localization step extracts candidate text lines from a still image frame by applying a series of filters.
The first step involves the identification of text blocks on the image, where the blocks are defined as rectangular
regions containing one or more lines of text. Let S denote the set of pixels in an image I. For any site s (s
∈ S), we denote T (s) = true if s is contained in a text block. Text blocks can be identified by estimating the
probability P (T (s) = true|I) and grouping together pixels with high probability into regions. There are two
observations we can make about characters on images. Firstly, text blocks containing these characters have short
edges in vertical and horizontal orientations. Secondly, the edges are connected to each other because of the
connection between character strokes. These characteristics can be exploited using Canny filters that detect the
vertical and horizontal edges.

Cv(s) =

{

1 if s is a vertical edge point
0 otherwise

(1)

Ch(s) =

{

1 if s is a horizontal edge point
0 otherwise

(2)

Equations 1 and 2 denote the per site edge maps of an image. Figure 2 shows an image and the corresponding
horizontal and vertical edge images after the Canny filter was applied to the original image. In the following
step, different dilation operators are used for two kinds of edge pictures to connect the horizontal edges in the
vertical direction and the vertical edges in the horizontal direction. The dilation operators are mathematical
morphological operators. Their structures are shown in Figure 3 (a) and (b). These dimensions of the dilation
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Figure 3. (a) 7×1 morphological operator for vertical edge dilation (b) 4×6 morphological operator for horizontal edge
dilation.

operators are chosen empirically by observing the results of dilation using operators of various sizes. It is
noticeable that the size of the vertical edge dilator is smaller in size than the horizontal operator because the
horizontal edges lie closer to each other in comparison to vertical edges.

Dv = Cv ⊕ rectv (3)

Dh = Ch ⊕ recth (4)

We denote the operators by rectv and recth respectively and Equations 3 and 4 demonstrate their functions
mathematically. Here, Dv and Dh are the dilated images respectively. The vertical and horizontal edge dilation
results are shown in Figure 4 (a) and (b) respectively.

(a) (b) (c)

Figure 4. (a) Horizontal Edge Dilation.(b) Vertical Edge Dilation. (c) ANDed image.

Following the steps of vertical and horizontal edge dilation, there needs to be a method for creating a single
image that captures the connectivity of vertical and horizontal edges. To this direction, we consider only the
regions on the image frame that are covered by both the vertical dilated regions and the horizontal dilated
regions. Mathematically this indicates taking a logical AND of the two dilated images. Therefore, P (T |s, I) is
estimated as:

P (T |, s, I) = Dv(s)Dh(s) (5)

The resulting image is shown in Figure 4 (c). The entire procedure till this step is fast and extracts text regions
irrespective of the intensity of the text and the backgrounds. Also, the parameters of Canny edge detection can
be tuned by empirically observing the quality of text region detection over a small set of data. The text blocks
are extracted from the image by doing a connected component analysis and computing the external contour of
a region. A sample result is shown in Figure 5 (a). The recall at this step is quite high and the false positive
regions are mainly slanting stripes and small areas of the background or human faces consisting of sharp edges.
The next stage of filtering reduces their number by a large extent. To normalize size of the text suitable for a
commercial OCR, the next step of text localization involves the identification of individual text lines. In other
words, this subtask includes the identification of top and bottom baselines of horizontally aligned text lines.
There are several advantages of this step. It reduces the number of false alarms such as slant stripes and also
refines the location of text strings in candidate regions that contain text connected with background objects.
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Figure 5. (a) Candidate text regions bordered by white rectangles. (b) Individual text lines extracted from the text
regions.

The process of baseline detection starts with the computation of the Y-axis projection h(y), where h(y)
denotes the number of text pixels in line y on the image. Three splitting algorithms are used in a cascading
fashion after this that use the value of h(y).

1. Variable Length Splitting: This method of text line identification aims at splitting a text region con-
taining text strings of different lengths or text strings connected with background objects whose length is
usually shorter than that of text strings. For a particular text region, the Y-coordinate y0 with maximum
absolute derivative is selected. If this maximum derivative is above a given threshold tg and h(y0) is below
50% of the length of the longest line in the region, the region is split at line y0.

2. Equal Length Splitting: When a region consists of two text lines of similar lengths, it may be split
using Otsu’s thresholding method.17 Considering h(y) as a one-dimension histogram, Otsu’s method finds
the threshold (line y0) that minimizes the intra-class variance of the two text lines. Then, if h(y0) is less
than 50% the longest line in this region, we split the region at line y0.

3. Baseline Refinement: This method of splitting is applied when a text line cannot be split anymore.
If a region cannot be split by the previous two algorithms, it is assumed that it may contain only one
text line, and the top and bottom boundaries (baselines) of the region are refined to a yield more precise
location. To this end, the greatest region (in height) is searched whose fill-factor is above a given threshold
TF . Also, we threshold the width and height of a text line to prune the number candidate text regions.

Figure 5 (b) show final text lines extracted from an example image frame. The output of the text localization
step may be optionally sent to a text verification step that we describe next.

3.1.2 Text Verification

The verification step of text detection involves the classification of extracted text lines into actual text regions
or otherwise. Before running a classifier on an extracted line, each candidate text line is normalized with respect
to height (16 pixels) to reduce the variance of character size. The features used for text verification fall into 4
categories - Grayscale Spatial Derivative Features, Distance Map Features, Constant Gradient Variance Features
and DCT Coefficient Features. We describe them in some more detail as follows:

1. Grayscale Spatial Derivative Features: The first set of features are the spatial derivatives of the image
brightness functions in both X and Y directions. It is important to note here that all features are extracted
from 16 × 16 windows W sliding over the image grid S. Therefore, it has 512 dimensions. This feature
measures the contribution of contrast for a given window.



2. Distance Map Features: Since grayscale values of both characters and background may vary, contrast is
background dependent. To compensate for this weakness of the previous feature, the distance map (DM)
features are used. DM is a feature image that only relies on the position of strong edges on the image. We
define it as follows:

∀(x, y) ∈ S, DM(x, y) = min
(xi,yi)∈E

d((x, y), (xi, yi)) (6)

Here S is the image, (x, y) is an individual pixel, E is an edge and d is the Euclidean distance.

3. Constant Gradient Variance Features: Since distance maps are based on edges, they involve thresholds
that need to be tuned. To avoid using any thresholds, constant gradient variance (CGV) features are used.
This variance normalization technique is usually used to enhance grayscale images or to preprocess input
data in speech. The basic underlying principle is to apply this technique on the gradient image to normalize
the contrast at a given point using the local contrast variance computed in a neighborhood of this point.
More formally, let g(x, y) be the gradient magnitude at pixel (x, y) and let LM(x, y) (or LV (x, y)) denote
the local mean (or local variance) of the gradient. We define them as:

LM(x, y) =
1

|Gx,y|
∑

(xi,yi)∈Gx,y

g(xi, yi) (7)

LV (x, y) =
1

|Gx,y|
∑

(xi,yi)∈Gx,y

(g(xi, yi) − LM(x, y))2 (8)

where Gx,y is defined as a 9 × 9 area around (x, y). Finally, we define the CGV for a site (x, y) is as:

CGV (x, y) = (g(x, y) − LM(x, y))

√

GV

LV (x, y)
(9)

where GV denotes the global gradient variance defined over the whole image S.

4. DCT Coefficients Features: DCT coefficients are computed over 16 × 16 blocks using fast DCT algo-
rithms. This frequency domain feature is widely used in JPEG and MPEG compression techniques.

Since, the features are calculated for a sliding window of 16 × 16 size, there are a total of 1280 features per
feature vector when all types of features are concatenated. SVMs are used for classification18 and Gaussian
Radial Basis Functions are used for experimentation. The standard library LibSVM19 is used as a tool for
classification. A total of 10,000 feature vectors are used for training. For a particular region r, we define the
confidence value of whether it is a text region as:

Conf(r) =
∑

zr
i
∈Zr

S(zr
i ).

1√
2πσ0

e

−d2

i

2σ2

0 (10)

where zr
i is a feature vector for a window on the region r, and S(zr

i ) is the sign of the classification on the
feature vector by the SVM classifier. di is the distance from the geometric center of the ith sliding window to
the geometric center of the text line r, and σ0 is a scale factor depending on the text line length. If Conf(r) ≥ 0,
we classify the text region as a valid region, otherwise we reject it.

3.1.3 Study on the Text Verification Step

We performed a short study on the performance of the entire text detection procedure, estimating its time
efficiency. Since the text verification step involves using SVMs for a very large space of 1280 features per image
window W , the classification model file becomes very large (∼ 80MB for a training set size of 10,000). The
classification time also is pretty high between 2 and 3 seconds per video frame. Since the text verification step
only helps improving the precision of a set of candidate text regions keeping the region extraction recall as high
as possible, we decided to study the effect of removing the verification step. In other words, this just means using



Metric VOCR with VOCR without
Text Verification Text Verification

Time taken to convert the video to text regions 1352 seconds 41 seconds
Time taken to convert text regions to final text 11 seconds 60 seconds

Total time taken to convert from video to final text 1363 seconds 101 seconds
Text files produced 588 1648

Table 1. Performance of the VOCR with and without the text verification step

the output of the text localization step, binarizing each text line and sending them to the commercial OCR.
This makes sense because for candidate text regions containing no text, the OCR normally outputs nothing.
However, if the OCR does produce some garbage output for an invalid text region, the text will have negligible
probability in influencing retrieval results. This is because of the fact that the garbage output will never match
a keyword in a search query, thus keeping the search results the same. After the removal of the verification step,
it was observed that the total time taken to produce the final OCR transcripts for a given video file was many
times less than the total time taken to produce the transcripts with the verification step. This implies that:

(time taken to remove invalid text regions using the verification step +
time taken to OCR the resulting text regions) �

(time taken to OCR all candidate text regions including invalid frames)

Table 1 shows the results of a small experiment performed on a part of a broadcast news video. The
experiment was performed only on a sample of 3871 frames, among which only one frame per millisecond was
considered. The results clearly show that the process is faster when text verification is not performed, and we
chose that alternative in the current work.

This is a situation unique to a video OCR system coupled with a retrieval pipeline, where a low precision
process is not penalized. Recall is the only metric that plays an important role. Because of this reason, we
decided to leave text verification out of the pipeline and feed the next step of text recognition with the binarized
output of text localization directly. However, we conjecture at this point that tuning SVM parameters and
performing more feature engineering might revert the above relationship, but we did not perform that study in
the current work.

3.2 Text Recognition

Compared to the lengthy process of text localization, text recognition is straightforward. Before passing on a
text line to a commercial OCR, a significantly important step of binarization of the image has to be performed
to convert the image to an OCR readable format. Instead of going to complex segmentation methods, we simply
use Otsu’s algorithm17 for binarization of the image. The underlying principle of Otsu’s algorithm is to create
a histogram of the image and select a threshold to maximize interclass variance. This produces a binary image,
suitable for input to a commercial OCR.20 Figure 6 shows a set of text line regions extracted from real video
frames, the corresponding binarized images and the text extracted from the commercial OCR. It is noticeable
from the figure that at times, the output from the commercial OCR is incorrect resulting in information loss.

The text produced as output from the commercial OCR is used as the VOCR transcript. The following
section describes the experiments done with the Video OCR thus produced, with other transcription data and
our video dataset.

4. EXPERIMENTS AND RESULTS

In this section, we first describe the data used to evaluate the performance of the new VOCR. Second, we explain
the framework of the experiments, followed by the performance of the module compared to other methods of
transcribing news video.
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Figure 6. Extracted text lines, corresponding binarized images and text extracted from a commercial OCR

4.1 Data

We evaluate the video OCR on an assortment of TRECVID 2005 and 2006 evaluation datasets∗. In the present
set of experiments, we have tested our approach on the English language video files. The videos are from English
news channels and have significant amount of overlay text characterizing broadcast multimedia data. Altogether
the data set consists of 147 video files, corresponding to 30 hours and 52 minutes of video from TREC’05 data
and 52 hours and 37 minutes of video from TREC’06. These video files are processed by the VOCR module to
result in a collection of transcripts, each for one millisecond of a video file. We accumulate these transcripts on
the basis of shots to create shot documents.

Along with the VOCR transcripts, we have generated other textual transcripts from Sato’s VOCR system4

and an automatic speech recognition system (ASR).21 The ASR system is a standard one developed by Microsoft,
allows speech recognition and speech synthesis within Windows applications, and can be used by third party
applications. For each video file, our pipeline uses the ASR system to produce words at intervals at millisecond
precision. Thus, for every video file, we have a list of words with timestamps attached. Using a database of
shot start and end times, we create one transcript each for a shot, similar to the fashion in which we create shot
documents for the video OCR.

Sato’s VOCR uses analysis of consecutive frames to extract overlay text on the screen. In contrast, we do
not accumulate information over multiple frames but rather perform deeper analysis on independent individual
frames. We conjecture that analysis of single frames would result in better retrieval because flashing or moving
overlay text would not be captured by Sato’s VOCR system. This is corroborated by the results that we describe
in the following subsections. Datasets corresponding to different combinations of these sources are considered
for evaluation establishing a comparison of their influence on shot retrieval.

Metric V OCRMA V OCRFD

Time taken to the process the file 3767 seconds 1191 seconds
Text regions produced 78 4373

Text regions resulting in OCR text 40 2305
Per frame text region recall - ∼ 99%

Table 2. Performance of V OCRMA and V OCRF D on various metrics for a video file of 5 minutes 37 seconds

4.2 Experimental Setup

As part of our experimental setup, we created the following combination of sources for a given shot: 1) Sato’s
VOCR with text accumulation over multiple frames (V OCRMA henceforth) only, 2) the newly implemented
VOCR with per frame deep analysis (V OCRFD henceforth) only, 3) V OCRMA and V OCRFD, 4) ASR only,

∗http://www-nlpir.nist.gov/projects/trecvid/



Source MAP Recall
TREC05 TREC06 TREC05 TREC06

V OCRMA 0.0003 0.0053 0.0033 (baseline) 0.0163 (baseline)
V OCRFD 0.0015 0.0091 0.0170 (+415.2%) 0.0277 (+69.9%)

V OCRFD + V OCRMA 0.0014 0.0098 0.0174 (+427.3%) 0.0327 (+100.6%)

(a)

Source MAP Recall
TREC05 TREC06 TREC05 TREC06

ASR 0.0111 0.0045 0.0353(baseline) 0.0413(baseline)
ASR + V OCRMA 0.0112 0.0071 0.0379(+7.3%) 0.0520(+25.9%)
ASR + V OCRFD 0.0045 0.0099 0.0466(+32.0%) 0.0570(+38.0%)

ASR + V OCRFD + V OCRMA 0.0044 0.0105 0.0470(+33.1%) 0.0586(+41.9%)

(b)

Table 3. (a) MAP and Recall values for different sources (b) MAP and Recall values for different sources with ASR
transcripts. Improvements over baselines are shown in parenthesis.

5) ASR and V OCRMA, 3) ASR and V OCRFD , and 5) ASR, V OCRMA and V OCRFD. We index the shots
from each of these combinations using the Lemur Toolkit,22 after removing stop words from the transcript texts.

To compare the performances of V OCRFD and V OCRMA, we performed both VOCRs on an broadcast
news MPEG clip of length 5 minutes 37 seconds. V OCRFD took 1191 seconds while V OCRMA took 3767 to
analyze the clip. V OCRMA produces 78 text regions from the clip, among which 40 produce some text from
the commercial OCR. On the other hand, V OCRFD produces 4373 text regions, among which 2305 produce
some text from the commercial OCR. The result shows that the V OCRFD has a superior performance and
that is corroborated by the results of multimedia retrieval that we describe in the following subsection. We also
observed that ∼ 50% of the text regions were false positives for V OCRFD, but it had a ∼ 99% recall, which is
what matters for retrieval purposes. Table 2 enumerates these details.

To complete our setup on evaluating the eventual video retrieval performance, we possess a set of 48 queries,
constituted by 24 queries each from TRECVID 2005 and 2006 datasets respectively. We performed a simple
query processing by removing all stop words from them and ran the queries on the Lemur created index.

4.3 Results

We have Mean Average Precision (MAP) and Recall at 1000 results as our primary measures of comparison
between the various transcript sources. Table 3 shows the trends in MAP measures for the two datasets. It is
clear from the recall values in the table that V OCRFD alone performs much better than V OCRMA alone with
an improvement of 415% and 70% for the TREC’05 and TREC’06 datasets respectively. Also, the combination
of V OCRFD and ASR performs much better (35% average improvement over the ASR baseline) than a mix of
V OCRMA and ASR (16.6% average improvement over the ASR baseline). Finally, from the recall perspective
we observe that the combination of all three sources results in the best measure. Figure 7 plots this graphically.

We expect the MAP measure to follow similar trends; if we just look at the figures for V OCRFD and
V OCRMA alone, we observe considerable improvements for the former case. However, for a mix of ASR and
the OCRs give contradictory results for the two datasets. We investigated this by looking at the query types
for the two datasets. We observed that for a particular query in the TREC05 dataset (“Find shots of Tony
Blair”), the ASR system has an average precision of 0.22 which is about 20 times the MAP of the ASR index
for TREC05. The corresponding average precision for the OCRs is zero. This skews the results for the entire
TREC05 dataset. However, if we look at the TREC06 dataset where results were not affected by a sole query,
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Figure 7. (a) Recall values for different sources (b) Recall values for different sources with ASR transcripts

we get a clear picture that V OCRFD performs better than V OCRMA; a mix of the three sources performs the
best as the recall case.

It would be wise to note that the observed MAP values are relatively low for all the experiments. The values
are such because we have considered only individual shots and not smoothed scores over several temporally
proximate shots, unlike a full video retrieval engine. Moreover, in a real video retrieval system,23 color features
are taken into consideration, semantic classification of scenes and query type analysis are performed to achieve
much higher MAP scores. Since the focus of our work was to only evaluate the performance of the developed
VOCR in comparison to a similar existing system, we did not test the framework in a full-featured retrieval
scenario.

We also evaluated the results on queries that contain named entities (NEs). We conjecture that V OCRFD

would perform better on average for such queries than all other individual sources and it was corroborated by
the recall values in particular. The MAP values for TREC06 suggest a similar trend as well. However, again
because of the influence of the aforementioned single query the MAP values of TREC05 gets skewed towards the
ASR transcripts. Table 4 shows the different figures for MAP and Recall for NE type queries.

5. CONCLUSION AND FUTURE WORK

In this paper, we have put forward a VOCR system inspired by a previous detailed work on text extraction
from images. We focused on the aspects of the text extraction process that are relevant for video information
retrieval. A comparison with another VOCR implemented using multi-frame integration and other types of image
processing techniques has also been done, which empirically shows the superiority of the VOCR system from the
perspective of multimedia retrieval. The effectiveness of the VOCR for particular queries is also observable from
the enumerated results. The VOCR system has been integrated to the Informedia Digital Library Project,23 was
a part the TREC 2006 Video Track evaluations and is being used in a daily basis.

However, we have not performed enough feature engineering for the text verification step, inclusion of which
leads to slow extraction of text regions. There is a lot of scope of work in that direction. The process of text
recognition can be improved by a large extent by using more detailed techniques of image segmentation and the
separation of text from complex backgrounds. From the information retrieval side, we have not performed enough
query processing and weighting of different sources for different types of queries. Appending these features to
the VOCR might improve the retrieval results to even greater extents. Other retrieval techniques, like using
different weights for different sources, processing of VOCR results by using a dictionary and nearest word match
might improve search results further.



Source MAP Recall
TREC05 TREC06 TREC05 TREC06

V OCRMA 0.0009 0.030 0.026(baseline) 0.084(baseline)
V OCRFD 0.0027 0.047 0.104(+300.0%) 0.128(+52.4%)

V OCRFD + V OCRMA 0.0028 0.055 0.111(+326.9%) 0.156(+85.7%)

(a)

Source MAP Recall
TREC05 TREC06 TREC05 TREC06

ASR 0.0292 0.023 0.052(baseline) 0.112(baseline)
ASR + V OCRMA 0.0295 0.037 0.072(+38.5%) 0.168(+50.0%)
ASR + V OCRFD 0.0094 0.052 0.118(+126.9%) 0.186(+66.1%)

ASR + V OCRFD + V OCRMA 0.0095 0.056 0.124(+138.5%) 0.191(+70.1%)

(b)

Table 4. (a) MAP and Recall values for different sources for NE type queries (b) MAP and Recall values for different
sources for NE type queries with ASR transcripts. Improvements over baselines are shown in parenthesis.
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