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Abstract

Person re-identification is the problem of recogniz-

ing people across images or videos from non-overlapping

views. Although there has been much progress in person

re-identification for the last decade, it still remains a chal-

lenging task because of severe appearance changes of a per-

son due to diverse camera viewpoints and person poses. In

this paper, we propose a novel framework for person re-

identification by analyzing camera viewpoints and person

poses, so-called Pose-aware Multi-shot Matching (PaMM),

which robustly estimates target poses and efficiently con-

ducts multi-shot matching based on the target pose in-

formation. Experimental results using public person re-

identification datasets show that the proposed methods are

promising for person re-identification under diverse view-

points and pose variances.

1. Introduction

In recent years, a huge number of surveillance cameras

have been installed in public places (e.g. offices, stations,

airports, and streets) in order to closely monitor the scene

and to give early warning of events such as accidents and

crimes. However, it requires a lot of human efforts for deal-

ing with large camera networks. In order to reduce the

human efforts, an automatic person re-identification, i.e.

re-id, task that associates people across images from non-

overlapping cameras has been widely utilized.

For re-identifying people, most previous works generally

rely on people appearances such as color, shape, and tex-

ture, since there is no continuity between non-overlapping

cameras in terms of time and space. For this reason,

many works have been focused on appearance modeling

and learning such as feature learning [7, 25], metric learn-

ing [10,18], and saliency learning [24] for the efficient re-id

task. Unfortunately, however, the appearance of a person

can change considerably across images depending on cam-

era viewpoints as well as the pose of a person as shown in

Fig. 1; thus the person re-id task relying only on the ap-

pearances is very challenging. Nonetheless, many previous

Figure 1. Challenging in person re-identification due to per-

son appearance changes. Person appearance changes de-

pending on the camera viewpoint and the pose of a person.

re-id frameworks [10, 18, 24] commonly adopt single-shot

matching for measuring similarity (or difference) between

a pair of person image patches. However, it is still hard to

identify people with single-shot appearance matching be-

cause of the aforementioned severe appearance changes of

people. In order to overcome the limitation of single-shot

matching, several multi-shot matching methods [7, 13, 19]

have been proposed in recent years; however the ambiguity

owing to the viewpoint and pose variations is still remained.

In real world surveillance scenarios, each target (i.e. per-

son) provides multiple observations along with its moving

path. Furthermore, surveillance videos contain scene struc-

tures as well as scene contexts; a ground plane of the scene,

the moving trajectory of a person, etc. In practice, it is pos-

sible to estimate the camera viewpoint from the scene infor-

mation via human height-based auto-calibrations [11, 16]

and vanishing point-based auto-calibrations [17]; then the

difficulties of person re-id become more tractable.

In this paper, we propose a novel framework for per-

son re-identification by analyzing camera viewpoints and

person poses, so-called Pose-aware Multi-shot Match-

ing (PaMM). We first calibrate camera viewpoints and ro-

bustly estimate target poses based on the proposed tar-

get pose estimation method. We then generate a multi-

pose model containing four representative features ex-

tracted from four image clusters grouped by person poses

(i.e. f ront, right, back, left). After generating multi-pose

models, we calculate matching scores between multi-pose

models in a weighted summation manner based on the pre-

trained matching weights. With the proposed person re-

identification framework, we can exploit additional cues
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such as person poses and 3D scene information so as to

make person re-identification problem more tractable.

To validate our methods, we extensively evaluate the per-

formance of the proposed methods using public person re-id

datasets [3, 9, 19]. Experimental results show that the pro-

posed framework is promising for person re-identification

under diverse viewpoint and pose variations and outperform

other state-of-the-art methods.

The main ideas of this work are simple but very effec-

tive. In addition, our method can flexibly adopt any existing

person re-identification methods such as feature learning-

based [7, 25] and metric learning-based [5, 10, 20] methods

as the baseline of our re-id framework. To the best of our

knowledge, this is the first attempt to exploit viewpoint and

pose information for multi-shot person re-identification.

2. Previous Works

We classify previous person re-identification methods

into single-shot matching-based methods and multi-shot

matching-based methods and briefly review them.

2.1. Single­shot matching

In order to re-identifying people across non-overlapping

cameras, most of works generally rely on the appearances

of people since there are no spatio-temporal continuity; we

cannot fully utilize the motion or spatial information of a

target (i.e. person) for person re-identification. For this rea-

son, most of works have focused on appearance-based tech-

niques such as feature and metric learning for the efficient

person re-identification.

For feature learning, M. Farenzena et al. [7] proposed

symmetry-driven accumulation of local features which are

extracted based on principles of symmetry and asymmetry

of a human body. This method exploits the human body

model which is robust to human pose variations. Feature

learning methods that select or weight discriminative fea-

tures have been proposed in [15,25]. These methods enable

us to adaptively exploit features depending on the person

appearance. Regarding the metric learning, several meth-

ods have been proposed such as KISSME [10], LMNN-

R [6], and applied to the re-identification problem. Some

works [10, 18] extensively evaluated and compared several

metric learning methods (e.g. ITML [5], KISSME [10],

LMNN [20] and Mahalnobis [18]) and showed the effec-

tiveness of metric learning for re-identification. Similar to

the metric learning methods, a saliency learning method

was also proposed by R. Zhao et al. [24] which learns

saliency for handling severe appearance changes.

Recently, deep learning-based person re-identification

using a Siamese convolutional network have been pro-

posed [1, 22] for simultaneously learning both features and

metrics. Also [14] proposed both feature extraction and

metric learning methods for re-identification.

On the other hand, a few works [2, 21] using target pose

priors (pose cues) for person re-identification have been

proposed very recently. S.Bak et al. [2] proposed to learn

a generic metric pool which consists of metrics, each one

learned to match specific pairs of poses. Z.Wu. et al. [21]

proposed person re-identification involving human appear-

ance modeling using pose priors and person-specific feature

learning. Although these methods utilized pose priors for

person re-identification, they consider single-shot matching

that recognizes people by using a single appearance, which

has difficulties in handling diverse appearance changes. In

this paper, we propose a person re-identification framework

using pose cues for efficient multi-shot matching.

2.2. Multi­shot matching

To overcome the limitation of single-shot matching-

based methods, several multi-shot matching-based person

re-identification methods have been proposed in recent

years. Besides feature learning, Farenzena et al. [7] also

provided multi-shot matching results by comparing each

possible pair of histograms between different signatures (a

set of appearances) and selecting the obtained lowest dis-

tance for the final score of matching. T. Wang et al. [19]

proposed a video ranking method for multi-shot matching

which automatically selects discriminative video fragments

and learns a video ranking function. Y. Li et al. [13] also

proposed a multi-shot person re-id method based on iter-

ative appearance clustering and subspaces learning for ef-

fective multi-shot matching. Even though the multi-shot

matching person re-identification methods overcome the

limitations of single-shot matching to some extent, the am-

biguity owing to the viewpoint and pose changes is still re-

mained.

3. Motivation and Main Ideas

As shown in Fig. 1, person re-identification is quite chal-

lenging due to camera viewpoint and target pose variations.

However, what if we know the camera viewpoint and the

pose priors of targets in every non-overlapping camera in

advance? In fact, the progress in auto-calibration tech-

niques [11, 16] enable us to extract additional cues such as

camera parameters, ground plane, 3D position of the tar-

gets without any off-line calibration tasks [23]. By exploit-

ing those additional cues, we can also estimate target poses

as described in Section 4.1. In this paper, we fully exploit

those additional cues for multi-shot matching and propose

the Pose-aware Multi-shot Matching (PaMM) for person re-

identification.

Suppose that we estimate camera viewpoints and tar-

get poses, and there is a simple 2vs2 matching scenario

containing one same-pose matching (f ront-f ront) and three

different-pose matchings (f ront-right, left-f ront, left-right)

as shown in Fig. 2. We can expect that the result of the
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Figure 2. Proposed multi-shot matching framework for person re-identification.

same-pose matching is generally more reliable than those

of different-pose matchings, since targets keep their appear-

ances across cameras when the target poses are the same (In

this work, we exclude photometric issues such as illumina-

tion changes and camera color response differences). Then,

in this multi-shot matching scenario, it is desired that the

same-pose matching (f ront-f ront) plays a more important

role than different-pose matchings. Hence, in this work,

we incorporate this matching idea by aggregating match-

ing scores of all pose matchings in a weighted summation

manner as shown in Fig. 2, where the thicknesses of lines

indicate the matching weights (lines above ③ in Fig. 2). We

also study how to efficiently match between multi-shot ap-

pearances using target pose information.

4. Proposed PaMM Framework

In the proposed person re-identification framework,

we first estimate the camera viewpoint and target poses

(Sec. 4.1), and then generate multi-pose models contain-

ing four representative features extracted from four image

clusters obtained based on the target (i.e. person) poses (i.e.

f ront, right, back, left) (Sec. 4.2). After generating multi-

pose models, we calculate matching scores between multi-

pose models in a weighted summation manner based on

the pre-trained matching weights (Sec. 4.3). The matching

weight training is describe in Sec. 4.4. Figure 2 illustrates

an overall framework for person re-identification.

4.1. Target pose estimation

Before estimating target poses, we estimate camera in-

trinsic and extrinsic parameters (or camera pose) by using

auto-calibration algorithms based on the human heights [11,

16]. Then, a relation between an image (pixel coordinates)

and the real world (world coordinates) is described as





u

v

1



 = K
[

R t
]









X

Y

Z

1


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



, (1)
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Figure 3. Target pose estimation: (left) estimated 3D struc-

ture and target poses along the path , (right) corresponding

2D images and appearances grouped by poses.

where K, R, and t = [Xcam, Ycam, Zcam]
⊤

represent

a camera intrinsic matrix, a camera rotation matrix, and

a camera position, respectively, In addition, [u, v] and

[X,Y, Z] represent image and world coordinates, respec-

tively. As we know the camera parameters, we can project

every object in images onto the ground plane (world XY

plane). Object k appearing at frame t in camera C is

denoted by O
C,k
t = (PC,k

t ,v
C,k
t , θ

C,k
t ), where P

C,k
t =

[

X
C,k
t , Y

C,k
t , 1

]

, v
C,k
t , θ

C,k
t are the position, velocity, and

target pose angle w.r.t. the camera, respectively.

Inspired by [21], we define the target velocity v
C,k
t and

camera viewpoint vector c
C,k
t in order to estimate target

poses as

v
C,k
t =

[

(XC,k
t −X

C,k
t−1), (Y C,k

t − Y
C,k
t−1 )

]

, (2)

c
C,k
t =

[

(XC
cam −X

C,k
t−1), (Y C

cam − Y
C,k
t−1 )

]

. (3)

Assuming that pedestrians mostly walk forward, a target

pose angle of the object k can be estimated by (for con-

venience we omit C from here),

θkt = arccos

(

ckt
T
· vk

t
∥

∥ckt
∥

∥

∥

∥vk
t

∥

∥

)

. (4)

Figure. 3 shows the example of estimated target poses.

However, initially estimated θkt is noisy as in Fig. 4 (a). In
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Figure 4. (left) initial pose angle, (middle) smoothing result

in Cartesian coordinates, (right) smoothing result in polar

coordinates.

order to reduce the noise, we smooth θkt by using a moving

average algorithm in the polar coordinate system as

θ̂kt = arctan

(

∑t+m
i=t−m sin

(

θki
)

∑t+m
i=t−m cos

(

θki
)

)

, (5)

where m is a moving average parameter (we set m = 10).

Although there are several discontinuities around 0◦ and

360◦, the smoothing result is reliable thanks to the smooth-

ing process in polar coordinates, whereas the smoothing re-

sult in Cartesian coordinates is not reliable (Fig. 4 (b),(c)).

4.2. Multi­pose model generation

4.2.1 Sample selection based on sample confidence

For generating good multi-pose models, we ought to filter

out the unreliable target samples having incorrect angles or

polluted appearances along the moving trajectory. To this

end, we define sample confidence to measure the reliability

of target samples based on following requirements (R1-R3):

• Variation of angle (R1): We assume that the angle of

walking person does not change abruptly between tempo-

rally neighboring frames. If there are rapid changes in an-

gle across consecutive frames, we regard them as unreliable

samples and filter them out. We observe that, inaccurate

localization of a person generally causes large variation in

angle. In order to consider it, we measure the angle varia-

tion as

δkt = min
(

d
(

θ̂kt

)

,

∣

∣

∣
d
(

θ̂kt

)

− 360
∣

∣

∣

)

, (6)

where d
(

θ̂kt

)

=
∣

∣

∣
θ̂kt−1 − θ̂kt

∣

∣

∣
. Even though there is an angle

discontinuity between 0◦ and 360◦, δkt is reliably calculated

thanks to the second term of min function.

• Magnitude of target velocity (R2): When a target is sta-

tionary for several frames, the target velocity vk
t is close to

0 and the estimated target angle based on Eq. (4) becomes

unreliable1. To handle the problem, we measure the magni-

tude of the target velocity as Mk
t =

∥

∥vk
t

∥

∥

2
. A sample with

the small velocity magnitude is regarded unreliable.

• Occlusion rate (R3): A target occluded by others is also

not a reliable target sample since the appearance of target

1To estimate target viewpoint angles, we assume that targets mostly

move forward in Sec 4.1. However, in the case of stationary targets, the

assumption is not satisfied. Note that the stationary targets are likely to

have pure rotational motion which cannot be handled by Eq (4).
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(a) sample confidence under wrong detection
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(b) sample confidence under pure rotation
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(c) sample confidence under occlusion

Figure 5. Sample confidence under various conditions (best

viewed in color and high resolution image).

is polluted. To deal with the occluded target samples, we

measure the occlusion rate of each target as

Occkt = max
h∈Hk

(

area(Bk
t ∩Bh

t )

area(Bk
t )

)

, (7)

where Bk
t is a 2D bounding box of an object k at frame

t, Bh
t is a 2D bounding box occluding Bk

t , Hk is a set of

object indexes occluding object k. As we know the 3D po-

sition of each target Pk
t , it is easy to find Hk.

Based on the above requirements, we define the sample

confidence as

conf
(

Ok
t

)

= e−αδk
t ·tanh

(

Mk
t

)

·
(

1−Occkt

)

, (8)

where α is a scale parameter (we set α = 0.01). The

sample confidence lies in [0,1]. Figure 5 shows the sam-

ple confidences under various situations. We regard a target

sample as a reliable one with high sample confidence when

conf
(

Ok
t

)

> 0.8.

4.2.2 Generating multi-pose model

After the sample selection, we divide target samples into

four groups
{

gk
p

}

p∈{f,r,b,l}
according to their pose angles

(i.e. f ront, right, back, left). Each group covers 90◦. It

is worthy to note that the proposed sample confidence ef-

ficiently filters unreliable samples out as shown in Fig. 6.

After the clustering, we extract features from four groups

and the multi-pose model of object k is defined as

Mk =
{

f
(

gk
p

)}

p∈{f,r,b,l}
, (9)
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(b) average of each cluster with
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Figure 6. Clustering results according to target angels with-

out and with sample selection. The clusters with sample

selection repersent more clear directivity.

where f (·) is a function which extracts features from a set

of images. Details of feature extraction is described below.

Feature extracion: We extract dColorSIFT which is a

dense feature descriptor containing dense LAB-color his-

togram and dense SIFT as in [24]. The authors pointed out

that the densely sampled local features have been widely

applied to matching problems due to their robustness in

matching. In our feature extraction process, each person im-

age is normalized to 128×48 pixels and we extract dColor-

SIFT [24] descriptors from all images in each group. Then

each groups
{

gk
p

}

p∈{f,r,b,l}
has multiple feature descrip-

tors, respectively. We then select a median dColorSIFT

descriptor as the representative descriptor of each group.

The selection of the median feature descriptor is reliable

since it reflects the characteristics of each group robustly

to outliers and furthermore it keeps details. Finally, the

multi-pose model Mk of each person contains multiple rep-

resentative dColorSIFT descriptors extracted from multiple

groups. Our method can apply any kind of feature descrip-

tors and feature extraction methods.

4.3. Multi­pose model matching

In this section, we describe the matching process of

multi-pose models. Suppose that we have Mk, Ml which

are the multi-pose models of object k and l appeared in

different cameras, respectively. In order to measure the

similarity between two multi-pose models, we first calcu-

late all pairwise feature distances of multi-pose models as

xpq = dist
(

f
(

gk
p

)

, f
(

gl
q

))

, where p, q ∈ {f, r, b, l} and

dist (·) is a distance function. For the distance function, we

can use any metrics such as KISSME [10], ITML [5] and

LMNN [20]. Then, the multi-pose model matching cost is

computed in a weighted summation manner as

S
(

Mk,Ml
)

=

∑

p,q wpqepqxpq
∑

p,q wpqepq
, p, q ∈ {f, r, b, l} , (10)

epq =

{

1 if (p, q) pair exists

0 otherwise
, (11)

where wpq is a matching weight that attaches importance to

pairwise matching xpq . Training matching weights is de-

scribed in the next section.

4.4. Training matching weights

For training matching weights, we assume that ev-

ery (p, q) pair exists and omit the normalization term
∑

p,q wpqepq . Then Eq. (10) is rewritten as

S (x) = wTx,

x = {xff , xfr, . . . , xll}
T
,

w = {wff , wfr, . . . , wll}
T
,

(12)

where x ∈ R
16×1 is a vector of pairwise feature dis-

tances and w ∈ R
16×1 is a vector of matching weights. In

order to train matching weights w, we collect training sam-

ples D =
{

(xi, yi)|xi ∈ R
16×1, yi ∈ {−1, 1}

}N

i=1
, where

N is the number of training samples and yi is a correspond-

ing class of the sample. Given training set D, we exploit

Support Vector Machine (SVM) [4] to find the weights w

by solving following optimization problem:

arg min
w,ξ

(

1

2
‖w‖

2
+ λ

N
∑

i

ξi

)

,

s.t. yi
(

wTxi

)

≥ 1− ξi, ξi ≥ 0, for 1 ≤i ≤ N,

(13)

where λ is a margin trade-off parameter and ξi is a slack

variable. The solution given by SVM assures maximal mar-

gin. Details and the results of matching weight training are

given in Sec 6.1.

5. Datasets and Methodology

Datasets. For training matching weights, we use

CUHK02 [12] and VIPeR [8]. For test methods, we use

iLIDS-Vid [19], PRID 2011 [9] and 3DPeS [3].

• CUHK02 [12] contains 1,816 persons from five different

outdoor camera pairs. Five camera pairs have 971, 306, 107,

193 and 239 persons with the size of 160×60 pixels, respec-

tively. Each person has two images per camera which were

taken in different times. Most of people are with burdens

(e.g. backpack , handbag, strap bag, or baggage). For our

experiments, we manually extract all pose angles of each

person in four directions (i.e. f ront, right, back, left) since

CUHK02 does not provide the pose angles. This dataset is

used for training multi-shot weights w.

• VIPeR [8] includes 632 persons and two outdoor cam-

eras under different viewpoints and light conditions. Each

person has one image per camera and each image has been

scaled to be 128×48 pixels. It provides the pose angle of

each person as 0◦(f ront), 45◦, 90◦(right), 135◦, 180◦(back).

We use both CUHK02 and VIPeR datasets for training

multi-shot matching weight w.

• iLIDS-Vid [19] has been created from the pedestrians

in 2 non-overlapping cameras, monitoring an airport arrival

hall. It provides multiple cropped images for each 300 dis-

tinct individual and is very challenging due to clothing sim-
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(a) camera layout of video

sets

(b) sample frames of each camera (d-h)

Figure 7. Test dataset: 3DPeS [3]

ilarities, lighting and viewpoint variations, cluttered back-

ground and severe occlusions.

• PRID 2011 [9] provides multiple person trajectories

recored from 2 different static surveillance cameras, moni-

toring crosswalk and sidewalk. In the dataset, 200 persons

appear in both views.

Since the datasets (iLIDS [19], PRID [9]) do not pro-

vide full surveillance video sequences but provide only

cropped images, we could not automatically estimate cam-

era viewpoints and poses of targets. Therefore, in order

to evaluate our method with the datasets, we annotated the

pose of each target manually.

• 3DPeS [3] has been collected by 8 non-overlapped out-

door cameras, monitoring different sections of the campus.

Differently from other re-id datasets (iLIDS, PRID), it

provides full surveillance video sequences: providing 6 sets

of video pairs, uncompressed images with a resolution of

704x576 pixels at 15 frame rate, containing hundreds of

people and calibration parameters. However, this dataset

provides ground-truth person identity only for selected

snapshots (i.e. no ground-truth for video sequences). For

our experiments, we used 3 sets of video pairs (Set3,4,5)

and manually extracted ground truth labels (identities, cen-

ter points, widths, heights) of video Set3,4,5. The pose

of each target was estimated as described in Sec. 4.1. The

camera layout and sample frames are given in Fig. 7. Three

video pairs contain 39, 24 and 36 identities, respectively.

Evaluation methodology. To compare person re-

identification methods, we follow the evaluation steps de-

scribed in [7]. First, we randomly split person-identities in

video pairs into two sets with the equal number of iden-

tities, one set for training and the other set for testing.

We learn several metrics such as LMNN [20], ITML [5],

KISSME [10], and Mahal [18] for the baseline distance

functions of our person re-identification framework. After

training distance metrics, we calculate all possible matches

between testing video pairs. We repeat the evaluation

steps over 10 times. We plot the Cumulative Match Curve

(CMC) [8] representing true match being found within the

first n ranks for comparing performances of methods.

(a) Examples of positive pairs

(b) Examples of negative pairs

Figure 8. Examples of training sample pairs.

6. Experimental Results

6.1. Training multi­shot matching weights

In practice, we need to consider only 10 weights rather

than 16 weights due to the weight symmetry: we let wpq =
wqp, where p 6= q. Consequentially, we learn four same-

pose matching weights (wff , wrr, wbb, wll) and six differ-

ent - pose matching weights (wfr, wfb, wrb, wrl, wbl, wfl).

As mentiond in Sec. 5, for training the weights w ∈
R

10×1, we use two datasets, CUHK02 [12] and VIPeR [8].

By using the datasets, we generate 3,520 positive image

pairs and 35,200 negative image pairs that cover diverse

pose combinations as shown in Fig. 8. Here, a positive im-

age pair is a pair of images of the same person and a nega-

tive image pair is a pair of images of the different persons

regardless of the poses of persons. We then extract pairwise

feature distances {xff , xrr, . . . , xfl} for all images pairs

by following metric learning steps described in Sec. 5. Dis-

tributions of feature distances2 {xpq} are plotted in Fig. 9.

For example, Fig. 9 (a) shows the feature distance distri-

bution of f ront image pairs of the same person (positive)

and difference persons (negative). Note that, a large sta-

tistical distance between positive and negative distributions

implies the high discriminating power. We observe that the

same-pose matchings (Fig. 9 (a,b,f,g)) are more discrimina-

tive than different-pose matchings (Fig. 9 (c-e,h-j)).

After obtaining distributions of feature distances, we

generate training samples (xi, yi), where xi ∈ R
10×1,

yi ∈ {1,−1} by randomly selecting each xpq from each dis-

tribution. Figure 10 shows the result of weight training us-

ing the KISSME [10] distance metric. The result represents

that the weights of the same-pose matchings (ff, rr, bb, ll)
are generally larger than those of the different-pose match-

ings (fr, fb, rb, rl, bl, f l). For consecutive experiments,

we train each matching weight for each metric learning

method, individually. The training results do not depend on

the metric learning methods and show similar tendencies.

2Unfortunately, we could not make (r, l) pairs using training datasets

CUHK02, VIPeR since they do not have such pairs. In order to make the

distribution of xrl, we regard xrl follows the similar distribution with xfb.
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(a) xff
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(b) xrr
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(c) xfr
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(d) xfb
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(e) xfl
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(f) xbb
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(g) xll
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(h) xrb
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(i) xrl
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(j) xbl

Figure 9. Distributions of pairwise feature distances {xpq} extracted from training data.

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0 50 100 150
0

0.05

0.1

0.15

0

0.5

1

1.5

2

2.5

Figure 10. Trained weights (distance metric: KISSME [10])

6.2. Performance enhancements via PaMM

In experiments, we denote our method ‘Pose-aware

Multi-shot Matching’ as PaMM. As a baseline method for

PaMM, we can use any conventional single-shot matching-

based methods (e.g. feature learning methods, metric learn-

ing methods) — any single-shot matching-based method

can be used for computing pairwise feature distance in our

framework. In this work, we choose several single-shot

person re-identifications3 based on various metric learnings

such as LMNN [20], ITML [5], KISSME [10], and Maha-

lanobis [18] for the baselines of PaMM.

For validating the performance enhancement via PaMM,

we compare the person re-identifications with and with-

out PaMM using the dataset 3DPeS-Set3. To evaluate

each performance, we follow evaluation steps explained in

Sec. 5. As shown in Table. 1, all baselines [5, 10, 18, 20]

are improved considerably for all ranks (r=1,3,5,10) thanks

to the proposed PaMM. Especially, the performance en-

hancement at r=1 is remarkable (achieving 2.7%∼47.4%

enhancement). The results imply that proposed PaMM

can improve any kind of single-shot matching-based per-

son re-identification. Compared to conventional single-

shot matching-based methods, PaMM exploits a plenty of

appearances selected based on the sample confidence and

matches multiple appearances efficiently using pose cues.

In the consecutive experiments, we use KISSME [10] as

the baseline for PaMM.

3As the appearance of each identity for the single-shot matching-based

methods, we randomly select a single appearance for each identity. For

unbiased selections, we repeat the appearance selection over 10 times and

calculate the average performance for the final result.

Table 1. Performance enhancement over single-shot

matching-based methods via PaMM. † denotes a multi-shot

matching method.

3DPeS - Set 3

Modality \ Rank r = 1 r = 3 r = 5 r = 10
L2 (Euclidean) 31.5 52.6 63.1 86.8

L2-PaMM† 34.2 57.9 73.7 89.5
LMNN [20] 26.3 52.6 68.4 89.4

LMNN-PaMM† 52.6 79.0 86.8 94.7
ITML [5] 31.5 57.8 76.3 89.4

ITML-PaMM† 39.5 68.4 81.6 92.1
KISSME [10] 21.0 50.0 63.1 84.2

KISSME-PaMM† 68.4 89.5 94.7 100
Mahal [18] 31.5 63.1 73.6 89.4

Mahal-PaMM† 60.5 78.6 89.5 97.4

6.3. Performance comparisons with other methods

For performance comparisons with other methods, we

first evaluate methods using 3DPeS dataset providing full

surveillance videos. In this section we denote different ver-

sions of our person re-identification framework as follows:

• PaMM-nss: PaMM without sample selection.

• PaMM-nw: PaMM without weighted multi-pose match-

ing (we use uniform weights w = 1 for PaMM-nw).

• PaMM: PaMM with all proposed methods.

We also implemented other multi-shot matching meth-

ods for comparison as follows:

• Full Match-avg: matching all possible pairs between mul-

tiple appearances and averaging all matching scores.

• Full Match-min: matching all possible pairs between mul-

tiple appearances and selecting the smallest matching score

for the final score as used in [7].

Table. 2 represents that our methods outperform other

multi-shot matchings (Full Match-avg, Full Match-min)

and all single-shot matching methods. Even though the

multi-shot matchings ‘Full Match-avg’ and ‘Full Match-

min’ exploit all multiple appearances of targets, the per-

formances of both methods are lower than PaMM. It sup-

ports that the proposed PaMM reasonably extract represen-

tative features among multiple appearances (Sec. 4.2) and
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Table 2. Performance comparison. † denotes a multi-shot matching method. The best and second best scores in each rank are

marked with red and blue. For VaMM-nW, we use uniform weights w = 1. We use the same feature descriptor (dColorSIFT)

for all methods. Full Match and PaMM use KISSME [10] for their metrics. AUC is an area under curve of CMC.

3DPeS - Set 3 3DPeS - Set 4 3DPeS - Set 5 3DPeS - Set All

Modality \ Rank r = 1 r = 3 r = 5 AUC r = 1 r = 3 r = 5 AUC r = 1 r = 3 r = 5 AUC r=1 r=5 r=10 r=15 AUC
L2 (Euclidean) 31.5 52.6 63.1 79.4 33.3 41.6 54.1 64.6 11.1 27.7 44.4 61.6 19.3 30.6 38.7 50.0 66.8
LMNN [20] 26.3 52.6 68.4 80.8 33.3 58.3 66.6 74.3 22.2 47.2 72.2 79.2 24.4 48.7 65.3 74.4 80.8
ITML [5] 31.5 57.8 76.3 82.7 41.6 66.7 70.8 76.0 33.3 63.8 72.2 80.9 23.4 52.0 71.4 77.5 82.5
KISSME [10] 21.0 50.0 63.1 78.8 25.0 58.3 66.6 71.9 22.2 47.2 63.8 76.5 26.5 52.0 66.3 79.5 82.4
Mahal [18] 31.5 63.1 73.6 83.5 33.3 58.3 66.6 73.3 25.0 47.2 69.4 78.4 28.5 50.0 67.3 78.5 82.8

Full Match-avg.† 42.1 63.2 73.7 85.0 50.0 62.5 75.0 79.5 33.3 55.7 69.4 79.6 23.5 49.0 61.2 70.4 78.1

Full Match-min† 47.4 78.9 89.4 92.1 45.8 75.0 91.7 85.4 44.4 66.7 83.3 88.6 35.7 73.5 83.7 89.8 91.0

PaMM-nss†(ours) 57.9 89.5 94.7 95.3 58.3 75.0 83.3 87.2 55.6 77.8 83.3 89.5 52.0 79.6 83.7 91.8 92.7

PaMM-nw†
(ours) 68.4 89.5 94.7 95.6 58.3 83.3 83.3 88.9 55.6 77.8 83.3 87.4 56.1 78.6 89.8 91.8 92.4

PaMM†
(ours) 68.4 89.5 94.7 96.4 58.3 83.3 91.7 88.9 55.6 77.8 83.3 88.6 59.2 82.7 89.8 94.9 94.1

Table 3. Performance comparison with other methods. † denotes a multi-shot matching and aR an average rank. We

implemented the multi-shot version of L+XQDA by following [7].

iLIDS-Vid PRID 2011 3DPeS - Set All

Modality \ Rank r=1 r=5 r=10 r=20 aR r=1 r=5 r=10 r=20 aR r=1 r=5 r=10 r=15 aR
(S1) SDALF-SS [7] 5.1 14.9 20.7 31.3 8.0 4.9 21.5 30.9 45.2 7.7 10.8 24.6 35.7 42.4 6.0
(S2) Salience [24] 10.2 24.8 35.5 52.9 5.5 25.8 43.6 52.6 62.0 5.5 – – – – –
(S3) L+XQDA-SS [14] 18.0 41.2 54.7 67.0 4.5 39.0 68.0 83.0 91.0 3.2 35.5 69.5 80.1 87.6 3.0
(S4) KISSME [10] 11.3 27.3 37.3 49.7 5.0 22.3 43.2 55.1 70.4 5.5 26.5 52.0 66.3 79.5 4.0

(M1) SDALF-MS† [7] 6.3 18.8 27.1 37.3 7.0 5.2 20.7 32.0 47.9 7.2 23.2 44.4 56.6 65.7 5.0

(M2) Salience+DVR† [19] 30.9 54.4 65.1 77.1 1.7 41.7 64.5 77.5 88.8 3.7 – – – – –

(M3) L+XQDA-MS† [14] 21.7 49.1 61.8 75.3 3.0 56.5 85.7 96.3 97.7 1.0 42.1 70.0 84.5 91.4 2.0

(M4) PaMM† (Ours) 30.3 56.3 70.3 82.7 1.2 45.0 72.0 85.0 92.5 2.0 59.2 82.7 89.8 94.9 1.0

efficiently matches multi-pose models (Sec. 4.3).

Even though the test datasets 3DPeS-Set3,4,5 contain

people having various appearances and poses, they contain

a few number of identities (Set3:39, Set4:24, Set5:36).

When the number of identities is small, the re-identification

task becomes much easier because of the small pool of

comparison targets. To show the person re-identification

performance under more large scale camera networks, we

concatenate all datasets and generate 3DPeS-Set All

containing 99 identity pairs. It is reasonable since each

dataset (3DPeS-Set3,4,5) does not share identities with

each other. Table. 2 shows the comparison results with

dataset 3DPeS-Set All and represents our methods still

show promising performance compared to others.

We also provide evaluation results and comparisons with

other state-of-the art multi-shot matching methods such as

SDALF [7], Salience+DVR [19], and L+XQDA [14] with

more public datasets (iLIDS [19], PRID [9]) in Table. 3.

In Table 3, S1, S2, S3, and S4 (single-shot re-id methods)

are used as the baselines of M1, M2, M3, and M4 (multi-

shot re-id methods), respectively. Overall, PaMM shows the

best performance while significantly enhancing its baseline

performance (19%∼32.7% enhancement at r=1).

Although L+XQDA-MS [14] shows better performance

for PRID, it is mainly because the superior performance of

its baseline (S3). Actually, the performance enhancement of

M3 from S3 is less (3.7%∼17.5% at r=1) than ours — for

iLIDS which is much more challenging than PRID, the

improvement of ours and [14] are 19% and 3.7%, respec-

tively. PaMM shows promising performance regardless of

datasets. It should be also noted that PaMM can achieve

better performance by adopting better baseline methods.

7. Conclusions

In this paper, we proposed a novel framework for person

re-identification, so called Pose-aware Multi-shot Matching

(PaMM) that robustly estimates target poses and efficiently

conducts multi-shot matching based on the target pose in-

formation. We extensively evaluated and compared the per-

formance of the proposed method using public person re-

identification datasets. The results showed that proposed

methods are promising for person re-identification under

diverse target pose variances. The proposed methods can

flexibly adopt any existing person re-identification methods

for computing pairwise feature distance in our framework.
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