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Highlights

• Fast and accurate background modeling.

• Robustness to the absence of clean frames.

• Per-pixel parallel computation.

• Quantitative experiments on several benchmark se-
quences.

• Publicly available source code.
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ABSTRACT

Background subtraction is a widely used technique for detecting moving objects in image sequences.
Very often background subtraction approaches assume the availability of one or more clear (i.e., with-
out foreground objects) frames at the beginning of the sequence in input. However, this assumption is
not always true, especially when dealing with dynamic background or crowded scenes. In this paper,
we present the results of a multi-modal background modeling method that is able to generate a reliable
initial background model even if no clear frames are available. The proposed algorithm runs in real–
time on HD images. Quantitative experiments have been conducted taking into account six different
quality metrics on a set of 14 publicly available image sequences. The obtained results demonstrate a
high-accuracy in generating the background model in comparison with several other methods.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Background subtraction (BS) is a popular and widely used
technique that represents a fundamental building block for dif-
ferent Computer Vision applications, ranging from automatic
monitoring of public spaces to augmented reality. The BS pro-
cess is carried out by comparing the current input frame with
the model of the scene background and considering as fore-
ground points the pixels that differ from the model. Thus, the
fundamental problem is to generate a background model that is
as reliable as possible and consistent with the observed scene.

BS has been largely studied and many techniques have been
developed for tackling the different aspects of the problem. This
interest in BS is demonstrated by the many surveys published
on this topic. For example, a survey on statistical background
modeling has been conducted by Bouwmans et al. (2010) and
a review about methods for multisensor surveillance has been
realized by Cristani et al. (2010). A recent survey by Bouw-
mans (2014) provides a large overview of background models
by dividing them in traditional and recent approaches.

In addition to the large literature, open-source software li-
braries have been released, so that also non-experts can exploit
BS techniques for developing Computer Vision based systems.

∗∗Corresponding author: Tel.: +39-06-77274-063;
e-mail: bloisi@diag.uniroma1.it (Domenico D. Bloisi)

However, open issues in BS (see Fig. 1) still need to be ad-
dressed, including how to deal with:

• Sudden and gradual illumination changes (e.g., due to
clouds or time of day).

• Shadows (both hard and soft) and reflections.

• Camera jitter (e.g., due to wind in outdoor scenarios).

Fig. 1. Challenges for BS methods. a) Dark shadows (ATON data set). b)
Reflections on water (MarDCT data set). c) Swaying trees (Perception Test
Images Sequences). d) Moved furniture (CANDELA data set).
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Fig. 2. Background subtraction process. I(t) is the input image at time t, B(t) the background model, and F(t) the foreground mask. N images, selected with
a sampling period P, are used to generate and to update B.

• Background movement (e.g., waves on the water surface,
swaying trees).

• Permanent and temporary changes in the background ge-
ometry (e.g., moving furniture in a room, parked cars).

BS Process. According to Bouwmans (2014), the BS process
can be divided into three phases:

1. Background model initialization. N frames are collected
with a sampling period P and analyzed to create the first
background model B.

2. Foreground detection. The input image I is compared with
the current background model B to detect moving objects
in the scene.

3. Background model update. The background model B is
updated over time to reflect possible changes in the scene.

Phase (1) is carried out only once, exploiting N frames at
the beginning of the video sequence in input. Phases (2) and
(3) are executed repeatedly as time progresses in order to adapt
the background model coherently with with the changes in the
scene (see Fig. 2).

Background Model Initialization. In contrast to the widely
studied background model representation and model mainte-
nance routines, limited attention has been given to the prob-
lem of initializing the background model (Bouwmans, 2014).
In particular, often BS methods assume the availability of one
or more clean, i.e., without foreground objects, frames at the
beginning of the sequence in input (Maddalena and Petrosino,
2014b). Thus, the background model is initialized using the
first frames, presuming that they do not contain foreground ob-
jects. This is a strong assumption that is not always true, be-
cause of continuous clutter presence.

Model Update. Two different policies can be used to modify
the background model, namely selective and blind update. In
selective (or conditional) update, only pixels classified as be-
longing to the background are updated. The selective update
improves the detection of the targets since foreground informa-
tion are not added to the background model, thus solving the
problem of ghost observations. The use of information com-
ing from the previous background model is highlighted in Fig.
2 by the bi-directional arrow between the update module and
the background model B. However, when using selective up-
dating, any incorrect pixel classification (e.g., due to illumina-
tion changes) produces a persistent error, since the background

model will never adapt to it. This is why it is necessary also
to have a blind update, where no update decisions are taken
and every pixel in the background model is updated without
considering the previous computed models. On the other hand,
the blind update has the disadvantage that values not belonging
to the background (e.g., stationary foreground objects) can be
added to the model.

In this paper, we focus on the background initialization phase
of the BS process when dealing with image sequences where no
clean frames are available. We describe the results of an on-line
and real-time parallel method, called Independent Multimodal
Background Subtraction Multi-Thread (IMBS-MT), which is
an extended version of the IMBS method, described in (Bloisi
and Iocchi, 2012). The main contributions of this work are:

1. A parallel architecture to run in real-time with HD images
(1360×768 pixels), with a publicly available source code1.

2. An incremental background model generation to deal with
sudden changes in the scene.

For the experimental evaluation, 14 test sequences provided by
the Scene Background Initialization (SBI)2 data set have been
used. Quantitative results, obtained by considering six differ-
ent quality metrics, demonstrate the capability of IMBS-MT to
generate very accurate background models.

The rest of this paper is organized as follows. Related work
is discussed in the next Section 2, giving particular emphasis to
clustering-based BS methods and to existing software libraries.
The proposed method is described in Section 3. The results of
the quantitative comparison of IMBS-MT with other methods,
carried out on publicly available image sequences, are shown
in Section 4. Conclusions and future directions are discussed in
Section 5.

2. Related Work

As pointed out in the previous section, BS has been exten-
sively studied and many different approaches for generating ac-
curate foreground masks have been published. Evaluations and
comparisons for different BS methods have been presented in
recent surveys realized by Sobral and Vacavant (2014) and Xu
et al. (2016). From the large literature on BS algorithms, we

1http://www.dis.uniroma1.it/~bloisi/sw/imbs-mt.html
2http://sbmi2015.na.icar.cnr.it/SBIdataset.html
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have decided to discuss here methods adopting the same ideas
contained in our approach, namely a clustering algorithm for
building the model, an adaptive mechanism to adjust the model
in case of global variations in the scene, and a specific imple-
mentation to speed-up the foreground mask generation process.
Furthermore, this section contains the description of a set of BS
approaches for which open-source code and experimental data
are available, since we believe that providing the source code
for the algorithms and producing publicly available challenging
benchmarks are fundamental requirements for achieving more
and more reliable BS modules.

Clustering Approaches. One of the first real-time adaptive BS
methods based on clustering has been proposed by Butler et al.
(2003). The algorithm models each pixel by means of a group
of k clusters and adapts the clusters to deal with variations in
both the background and the ambient lighting. Incoming pixels
are compared and classified against the corresponding cluster
group by using the Manhattan distance. However, it is not pos-
sible to differentiate between moving objects and their shadows,
which often cause the segmentation to blur or to erroneously de-
tect shadows points as separate moving objects. Li et al. (2008)
describe a method for background modeling and moving ob-
jects detection based on clustering theory. An histogram con-
taining the pixel values over time is used to extract the moving
objects by considering each peak in the histogram as a cluster.
Fan et al. (2010) perform a k-means clustering and single Gaus-
sian model to reconstruct the background through a sequence
of scene images with foreground objects. Then, based on the
statistical characteristics of the background pixel regions, the
algorithm detects the moving objects. In addition, an adaptive
algorithm for foreground detection is used in combination with
morphological operators and a region-labeling mechanism. Ku-
mar and Sureshkumar (2013) propose a modification of the k-
means algorithm for computing BS in real-time. Their experi-
mental results show that selecting centroids can lead to a better
BS with the ability of handling images from dynamic environ-
ments.

Differently to the above-cited methods, the concept of time
interval is a key factor in our approach. Indeed, we build the
background model by considering N frame samples that are
collected on the basis of a time period P. The details about
our clustering algorithm are given in Section 3.

Adaptive Approaches. In order to deal with highly dynamic
background (e.g., water scenarios, crowded scenes or dense
urban traffic environments), it is crucial to consider a global
model of the movement of the scene (Ablavsky, 2003). Indeed,
the background model has to be sensitive enough to:

1. Detect moving objects.
2. Adapt to long-term lighting (e.g., time of day).
3. Take care of structural changes (e.g., objects entering the

scene and becoming stationary).
4. Adjust to sudden background changes (e.g., clouds pass-

ing or light switching).

Combining local (i.e., pixel-wise) and global (i.e., frame-
level) models allows to satisfy simultaneously both the sen-

sitivity to foreground motion and the ability to model sudden
background changes (Pennisi et al., 2015).

One of the first frame-level algorithm for dealing with global
changes in the scene has been written by Toyama et al. (1999).
A set of scene background models is maintained in memory
and the one used is the model that produces the fewest number
of foreground pixels. The approach is suitable only for situa-
tions where the scene presents cyclic changes (e.g., in the light
switching problem). The authors provide also a set of publicly
available sequences with ground-truth annotations called the
Wallflower data set. More recently, Vosters et al. (2012) pro-
pose a real-time approach, which combines Eigenbackground
with a statistical illumination model for coping with rapidly
changing illumination conditions. The method is based on two
algorithms: The former is used to reconstruct the background
frame, the latter improves the foreground segmentation. How-
ever, the moved background objects are detected as foreground
forever after movement. This is because the object’s new loca-
tion is not incorporated into the Eigenspace background model.

Vehicle traffic monitoring is an example of Computer Vision
application that can be strongly affected by sudden illumina-
tion changes and weather issues. Nieto et al. (2012) present a
vision-based system for vehicle tracking and classification de-
vised for traffic flow surveillance. They propose an adaptive
multi-cue segmentation strategy that detects foreground pixels
corresponding to moving and stopped vehicles, even with noisy
images due to compression. The approach adaptively thresh-
olds a combination of luminance and chromaticity disparity
maps between the learned background and the current frame,
where the disparity maps are generated by comparing the val-
ues of the pixel luminance and chromaticity differences with
respect to their corresponding temporal variances. Then, extra
features derived from gradient differences are used to improve
the segmentation of dark vehicles with casted shadows and to
remove headlight reflections on the road. However, the method
takes into account the color of the vehicle as a key feature, thus
white vehicles can often be included in the background model.

In our approach, we use statistics computed at frame level to
take care of global changes in the scene. If a large variation
in the total number of foreground pixels is detected, then the
background model is re-initialized in order to adapt to the new
situation. The details about how our method manages global
changes are given in Section 3.

Real-time/Parallel Implementations. Creating and maintain-
ing probabilistic background models for high definition images
is computationally expensive and can limit the real-time appli-
cations of BS methods to low resolution sequences, far below
the acquisition ability of state-of-the-art cameras (Culibrk and
Crnojevic, 2010). The Graphics Processing Unit (GPU) can
be used to speed-up the computation of the foreground image,
achieving real-time performance on high resolution frames.

Yang and Chen (2012) propose to use CPU and GPU as a
combined computing unit in order to perform BS in dynamic
background. GPU is employed to compute SIFT (Scale Invari-
ant Feature Transform) points in order to match between two in-
put frames, while CPU is used for compensating global motion
through an affine transformation. Culibrk and Crnojevic (2010)
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present a parallel implementation for the Background Model-
ing Neural Networks (BNNs) method, which uses unsupervised
learning. The GPU parallelization allows to handle 720×576
images in real-time. More recently, Wilson and Tavakkoli
(2015) utilize Nvidia’s CUDA architecture to accelerate their
non-parametric background modeling method, which employs
three stages of training, classification, and update, specifically
designed for the parallel CUDA architecture. An OpenCL al-
gorithm implementation for GPU devices of the GMM method,
obtained by taking into account specific features of the GPU ar-
chitecture, is presented in (Szwoch, 2015). For a video stream
of 1920×1080 pixel images captured at 15 fps, it was possi-
ble to exceed the source rate only off-line, since the amount of
computations was too large for CPUs to process the stream in
online mode.

Also optimized implementation of well-known BS algo-
rithms have been proposed to achieve real-time performance.
In (Szwoch et al., 2016), Gaussian mixture models (GMM) and
Codebook methods are tested on a supercomputer platform.
The GMM algorithm proves to be significantly more efficient
than the Codebook (about three times faster); however, in case
of 1920×1200 images, the GMM algorithm is not able to work
in real-time. Zivkovic and van der Heijden (2006) propose a
modification of the Kernel Density Estimation (KDE) method,
which uses a balloon variable-size kernel approach. The bal-
loon approach leads to a very efficient implementation that is
faster than the original KDE.

In this work, we do not use GPU acceleration to speed-up
the BS process. Instead, we describe how to compute in parallel
parts of the method by means of C++11 threads, obtaining real-
time performance on HD images (1360×768 pixels).

Publicly Available Resources. The possibility of having the
source code of the BS methods described in the literature repre-
sents a key point towards the goals of generating more and more
accurate foreground masks and of widely applying this technol-
ogy. OpenCV3 is an open source Computer Vision library re-
leased under a BSD license and hence free for both academic
and commercial use. OpenCV version 3 provides the source
code for two BS methods:

1. MOG2: An improved adaptive Gaussian mixture model
(Zivkovic, 2004);

2. KNN: K-Nearest Neighbors background subtraction de-
scribed in (Zivkovic and van der Heijden, 2006).

BGSLibrary4 is an OpenCV based C++ BS library contain-
ing the source code for both native methods from OpenCV and
several approaches published in the literature (Sobral, 2013).
The author also provides a JAVA graphical user interface (GUI)
that can be used for comparing different methods.

A complete and updated collection of BS methods and pub-
licly available data sets can be found in the Background Sub-
traction website5. A section of the website is dedicated to the

3http://opencv.org
4https://github.com/andrewssobral/bgslibrary
5https://sites.google.com/site/backgroundsubtraction

available implementations of both traditional, e.g., statistical
methods (Bouwmans, 2011), and recent emerging approaches,
e.g., Fuzzy background modeling (Bouwmans, 2012). Another
section of the website contains links and references for avail-
able BS data sets.

ChangeDetection (Goyette et al., 2012) is a benchmark data
set containing several video sequences annotated with ground
truth data. The sequences are grouped into different cate-
gories, like “Dynamic Background”, “Camera Jitter”, “Inter-
mittent Object Motion”, and “Shadow”, which contain very
challenging scenarios.

A database of surveillance videos and image sequences, ded-
icated to the maritime domain, is MarDCT – Maritime Detec-
tion, Classification, and Tracking data set (Bloisi et al., 2015).
MarDCT has been developed for evaluating BS techniques
on environments characterized by water background and for
providing very challenging data (containing reflections, occlu-
sions, waves, and wakes) from real working systems.

In this paper, we use the SBI data set for evaluating our ap-
proach and to obtain a quantitative comparison with other state-
of-the-art methods. The details concerning the SBI sequences
are given in Section 4.

3. Parallel Background Model Initialization

IMBS (Independent Multimodal Background Subtraction) is
a BS method that has been designed for dealing with highly
dynamic scenarios characterized by non-regular and high fre-
quency noise, such as water background (Bloisi and Iocchi,
2009). IMBS is a per-pixel, non-recursive, and non-predictive
BS method, meaning that:

• Each pixel signal is regarded as an independent process
(per-pixel).

• A set of input frames is analysed to estimate the back-
ground model based on a statistical analysis of those
frames (non-recursive).

• The order of the input frames is considered not significant
(non-predictive).

The above listed design choices are fundamental for achiev-
ing a very fast computation, since (i) working at pixel level and
(ii) considering each background model as independent from
the previous computed ones allows for carrying out the BS pro-
cess in parallel.

In the next sub-section, we briefly summarize the IMBS
method, whose details can be found in (Bloisi and Iocchi,
2012). Then, we present an extended version of the original
IMBS algorithm, called IMBS-MT (multi-tread), which is de-
signed for parallel computation.

3.1. IMBS

The main idea behind IMBS is the discretization of the color
distribution for each pixel, by using an on-line clustering al-
gorithm. More specifically, for each pixel p(i, j) the analysis
of a set of N sample image frames is used to determine the
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Fig. 3. IMBS stores multiple background values for each pixel. The five
RGB modes for the BG model corresponding to the pixel in position (123,
107) are shown in this figure.

background model B(i, j) for that pixel. B(i, j) is a set of pairs
〈c, f (c)〉, where c is a value in the chosen color space (e.g., a
triple in RGB or HSV space) and f (c) is the number of oc-
currences of the value c in the sample set (see Fig. 3). After
processing all the samples, only those color values that have
enough occurrences (i.e., ≥ D) are maintained in the back-
ground model. In this way, the background model contains, for
each pixel, a discrete and compact multi-modal representation
of its color probability distribution over time.

IMBS does not need to fit the data in some predefined dis-
tributions (e.g., Gaussian). This is the main difference with re-
spect to a Mixture of Gaussians based approach (Stauffer and
Grimson, 1999; Zivkovic, 2004), where fitting Gaussian distri-
butions is required and typically the number of Gaussians is
limited and determined a priori. Once the background model
B is computed, the foreground mask is built by using a quick
thresholding method: A pixel p(i, j) is considered as a fore-
ground point if the current color value is not within the distri-
bution represented in the model, i.e., its distance from all the
color values in B(i, j) is above a given threshold A. IMBS re-
quires a time R = NP for creating the first background model.
Then a new model, independent from the previous one, is built
continuously, according to the same refresh time R.

The functional architecture for IMBS is shown in Fig. 4,
where the parameters in input to each module are highlighted.

Fig. 4. IMBS functional architecture. The parameters used by the algo-
rithm are circled.

Fig. 5. Use of the “foreground modes” for detecting abandoned objects.

Background Model Update. IMBS adopts a hybrid update
policy that allows for highlighting the pixels in the current fore-
ground mask that represent not moving foreground regions. In-
deed, IMBS uses the foreground mask F(t) as feedback infor-
mation to influence the model update, thus being able to point
out the presence of stationary foreground objects in the scene.

Given a scene sample S k and the current foreground binary
mask F, if F(i, j) = 1 and S k(i, j) is within one of the modes in
the new background model under development, then that mode
is labeled as a “foreground mode”. Once the background model
is completed, if the pixel p(i, j) of the current frame is associ-
ated with a foreground mode, then p is not considered as a sim-
ple background point, instead it is classified as a potential fore-
ground pixel. If no changes happen in the scene, foreground
modes are then absorbed in the successive background model.

The results of our hybrid update on two sequences from the
ChangeDetection database are shown in Fig. 5. When an object
is abandoned in the scene (first column in Fig. 5), even if the
new background model after the event contains the represen-
tation of that object (second column), IMBS is able to discern
between reliable (white colored) and potential (grey colored)
foreground pixels (third column).

IMBS can achieve real-time computation (i.e., about 25
frames per second) for 640×480 input images (Bloisi et al.,
2014). In the next sub-section, the parallel method IMBS-MT
is described, which has been designed to achieve real-time per-
formance on HD images (1360×768 pixels), as demonstrated
by the experiments shown in Section 4.

3.2. Parallel Method IMBS-MT

IMBS-MT differs from the original IMBS in two aspects:

1. The background formation and foreground extraction pro-
cesses are carried out in parallel on a disjoint set of sub-
images from the original input frame;

2. The background model is initialized incrementally, i.e., the
quality of the model is increased as soon as more frame
samples are available.

Multi-thread Implementation. If the number of available CPU
cores is r, then the input image is split into r non-overlapping
regions and each region is assigned to a thread. Instead of cre-
ating new images, the r regions are represented as references to
the parts of the original whole image. This parallel procedure
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Fig. 6. IMBS-MT (multi-thread) functional architecture. This figure shows
the configuration with four CPU cores available. N and P (circled in dashed
lines) parameters changes over time, due to the incremental model gener-
ation.

is applied both for generating the foreground mask F and the
background model B. When all the threads complete the pro-
cessing, all the regions automatically join F and B thanks to
the used reference approach. The scheme in Fig. 6 shows the
computation flow for IMBS-MT.

Incremental Background Model Generation. IMBS-MT uses
an incremental process for initializing the BG model B, which
is created by analyzing a sample set having a variable size. Fig.
7 shows the incremental background modeling mechanism that
is carried out before reaching the steady state. In order to have a
foreground mask available as quickly as possible, the first back-
ground model is built by considering N1 images, with N1 � N,
for example N1 = N/5. Next, the second model is generated
after N2P ms, where N1 < N2 < N, for example N2 = N/3. The
first stable model is obtained when tk + NkP reaches the final
value NP, after which a new model is generated every NP ms.

This incremental process is fundamental for dealing with
sudden changes in the scene, since it allows for quickly recov-
ering from situation where the collected scene samples are no
more useful, due to changes in the environment. A way for trig-
gering the incremental mechanism is to monitor the number of
foreground pixels: If a large increment of the foreground pixels
is detected, then the background model is replaced by starting
the incremental background model initialization process.

Fig. 7. Incremental BG model generation. In order to obtain a foreground
mask as quickly as possible, the first BG models are computed processing
a limited number of samples.

4. Experimental Results

In order to experimentally evaluate the performance of our
method, 14 different image sequences, provided in the Scene
Background Initialization (SBI) data set, have been used. The
SBI sequences have been extracted from multiple publicly
available sequences that are frequently used in the literature to
evaluate background initialization algorithms.

We use for comparison the results generated by nine other
BS methods, i.e., Median (Maddalena and Petrosino, 2014a),
SC-SOBS (Maddalena and Petrosino, 2012), WS2006 (Wang
and Suter, 2006), RSL2011 (Reddy et al., 2010), Photomontage
(Agarwala et al., 2004), CA2008 (Chen and Aggarwal, 2008),
KNN, and MOG2. For the KNN and MOG2 methods, we have
used the implementation available in OpenCV 3 for comput-
ing the results, while, for the other methods, we show the re-
sults provided by Maddalena and Petrosino (2015), published
in occasion of the Scene Background Modeling and Initializa-
tion (SBMI2015) Workshop, held in conjunction with ICIAP
2015. However, since in (Maddalena and Petrosino, 2015) only
a subset of all the SBI sequences are considered, the quantita-
tive experimental results are split in two tables: Table 1 con-
tains the results of the experiments performed also by Mad-
dalena and Petrosino (2015) on seven out of the total fourteen
SBI sequences, while Table 2 shows the results obtained on the
remaining seven sequences.

4.1. Accuracy Evaluation

The proposed method has been evaluated both qualitatively
and quantitatively, by using the SBI scripts6 for computing the
results. We have maintained the default OpenCV parameters
for KNN and MOG2 on all the sequences, while we have used
the parameters P = 500 ms, N = 30, D = 2, and A = 5 for IMBS-
MT on all the sequences except for “Toscana”, which contains
only six frames and thus we set N = 5.

The qualitative evaluation is illustrated in Fig. 8, where the
first column contains a sample frame for each sequence. The
second column contains the ground truth images provided by
the SBI authors, which have been manually obtained by either
choosing one of the sequence frames free of foreground objects
or by stitching together empty background regions from differ-
ent sequence frames. The background model images computed
with the MOG2, KNN and IMBS-MT methods are shown in
the second, third, and forth columns, respectively. It is worth
noting that, for MOG2 and KNN, we created the model images
with the OpenCV function getBackgroundImage. Instead, for
IMBS-MT, the model image to be used with the SBI scripts has
been obtained by selecting, for each pixel p, the mode with the
minimum distance d from the ground truth:

d = arg min
k
|rk − rGT | + |gk − gGT | + |bk − bGT |

where (rk, gk, bk) is one of the modes in B for the pixel p and
(rGT , gGT , bGT ) is the corresponding ground truth value.

6http://sbmi2015.na.icar.cnr.it/MODLab/BckgInit/MATLAB/

EvaluateBckgInit3.zip



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

Fig. 8. Qualitative results on the Scene Background Initialization (SBI) data set.

This procedure allows to produce a bi-dimensional image by
considering the “best” background mode, which is in any case
a mode produced by our algorithm without introducing ground
truth information. Indeed, IMBS-MT labels a pixel as a fore-
ground point only if it differs from all the background color
values. Therefore, no background modes are more important
than the other ones. The last column in Fig. 8 contains the fore-
ground masks generated by IMBS-MT on the sample frames
shown in the first column.

Table 1 and Table 2 show the quantitative experimental re-
sults obtained on the fourteen SBI sequences (bold font is used
to denote the best performance). To compute the results, we
have used the quality metrics suggested in the SBI web page
and listed below, where GT and CB denote the true and esti-
mated background, respectively.

1. Average Gray-level Error (AGE) is the average of the gray-
level absolute difference between GT and CB images. Its
values range in [0, L−1], where L is the maximum number
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Table 1. Results on seven image sequences from the SBI data set.

Sequence Method AGE pEPs pCEPS MS-SSIM PSNR CQM
KNN 3.9413 0.0121 0.0021 0.9519 28.2208 37.4907

MOG2 2.4506 0.0109 0.0045 0.9833 34.3943 45.9714
Median 2.7105 0.9931 0.5339 0.9640 30.4656 42.6705

Hall SC-SOBS 2.4493 0.9801 0.3220 0.9653 30.4384 43.1867
& WS2006 2.6644 0.5563 0.0308 0.9821 30.9313 40.0949
Monitor RSL2011 3.2687 0.8321 0.4711 0.9584 28.4428 37.9971

Photomontage 2.7986 0.3610 0.0817 0.9819 33.3715 41.7323
CA2008 2.4737 0.3989 0.0000 0.9878 32.2503 41.2399

IMBS-MT 1.5350 0.0923 0.0000 0.9954 38.6214 48.5224

HighwayI

KNN 6.1277 0.0616 0.0003 0.8506 25.1521 34.8174
MOG2 2.6031 0.0023 0.0002 0.9753 35.8635 58.2889
Median 1.4275 0.1563 0.0143 0.9924 40.1432 62.5723

SC-SOBS 1.2286 0.0039 0.0000 0.9949 42.6868 65.5755
WS2006 2.5185 0.6849 0.0247 0.9816 35.6885 56.9113
RSL2011 2.8139 0.3477 0.0430 0.9830 36.0290 51.9835

Photomontage 2.1745 0.4076 0.0482 0.9830 37.1250 59.0270
CA2008 2.9477 1.1654 0.0846 0.9752 33.9800 56.1319

IMBS-MT 1.4913 0.0612 0.0026 0.9939 41.7728 58.8328

HighwayII

KNN 3.2112 0.0085 0.0001 0.9851 32.0981 39.6454
MOG2 2.0893 0.0040 0.0000 0.9946 36.1190 45.2643
Median 1.7278 0.3190 0.0013 0.9961 34.6639 42.3162

SC-SOBS 0.6536 0.0091 0.0000 0.9982 44.6312 54.3785
WS2006 2.4906 0.4883 0.0130 0.9927 33.9515 40.5088
RSL2011 5.6807 1.2448 0.4115 0.9766 28.6703 35.0821

Photomontage 2.4306 0.5885 0.0052 0.9909 34.3975 41.7656
CA2008 2.434 0.6328 0.0560 0.9919 33.5545 39.4813

IMBS-MT 1.8684 0.0260 0.0000 0.9960 40.1098 48.8094

CaVignal

KNN 15.9267 0.0813 0.0127 0.8241 18.2332 30.9930
MOG2 16.9327 0.1114 0.0837 0.8136 18.5891 34.5104
Median 10.3082 10.4632 8.1066 0.7984 18.1355 33.1438

SC-SOBS 4.0941 3.1949 1.6029 0.8779 21.8507 42.2652
WS2006 2.5403 1.5000 0.4743 0.9289 27.1089 37.0609
RSL2011 1.6132 0.0147 0.0000 0.9967 41.3795 52.5856

Photomontage 11.2665 11.2206 8.8529 0.7919 17.6257 32.0570
CA2008 9.2569 0.0625 0.0000 0.9932 27.5197 39.7879

IMBS-MT 0.7692 0.0147 0.0000 0.9982 45.9202 57.1044

Foliage

KNN 34.5615 0.3962 0.0385 0.6281 14.1761 25.6845
MOG2 32.3624 0.6685 0.5526 0.8038 16.5991 31.5282
Median 27.0135 47.3125 30.4583 0.6444 16.7842 28.7321

SC-SOBS 3.8215 0.5556 0.0000 0.9900 31.7713 39.1387
WS2006 6.8649 2.8507 0.0069 0.9754 27.2438 34.9776
RSL2011 2.2773 0.1493 0.0382 0.9951 36.7450 43.1208

Photomontage 1.8592 0.0000 0.0000 0.9974 39.1779 45.6052
CA2008 18.3613 11.5521 4.3681 0.9092 18.7767 29.9137

IMBS-MT 7.5809 9.8507 3.1319 0.9090 22.7278 34.0028
KNN 48.4920 0.4718 0.2966 0.4238 10.9196 19.8121

MOG2 33.8442 0.7108 0.6134 0.8584 16.2252 27.4728
Median 24.4211 32.2396 25.3203 0.6114 15.1870 27.4979

People SC-SOBS 15.1031 14.0234 5.0117 0.7561 16.6189 35.3667
& WS2006 5.4243 3.5716 0.0924 0.9269 22.6952 31.3847
Foliage RSL2011 2.0980 0.7969 0.5651 0.9905 32.5550 37.0598

Photomontage 1.4103 0.0039 0.0000 0.9973 41.0866 47.1517
CA2008 19.7347 12.2409 6.1914 0.8220 17.1567 25.9970

IMBS-MT 8.3982 7.3568 3.2305 0.8514 20.0658 32.5231

Snellen

KNN 61.9389 0.6832 0.4328 0.4493 10.6164 22.5804
MOG2 58.8159 0.7615 0.6839 0.5336 11.4143 27.0312
Median 42.3981 62.2010 56.9734 0.6932 13.6573 36.0691

SC-SOBS 16.8898 37.3553 24.3779 0.9303 21.2571 44.7498
WS2006 23.0010 23.1674 12.2685 0.7481 15.6158 24.9930
RSL2011 1.8095 0.6414 0.4774 0.9979 38.0295 50.2600

Photomontage 29.9797 33.4973 30.4688 0.5926 14.1466 26.9210
CA2008 40.5218 44.2371 30.6665 0.6886 12.9428 24.0239

IMBS-MT 14.4480 25.3279 19.7290 0.8668 19.7436 40.1151

of grey levels.
2. Percentage of Error Pixels (pEPs) is the ratio between the

EPs and the number N of image pixels. Its values range in
[0, 1].

3. Percentage of Clustered Error Pixels (pCEPs) is the ratio
between the CEPs and the number N of image pixels. Its
values range in [0, 1].

4. Multi-Scale Structural Similarity Index (MS-SSIM) uses
structural distortion as an estimate of the perceived visual
distortion. It assumes values in [0, 1].

5. Peak-Signal-to-Noise-Ratio (PSNR) is defined as:

PS NR = 10 log10
(L − 1)2

MS E

where L is the maximum number of grey levels and MS E
is the Mean Squared Error between GT and CB images. It
assumes values in decibels.

6. Color image Quality Measure (CQM) is based on a re-
versible transformation of the YUV color space and on
the PSNR computed in the single YUV bands. As for the
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Table 2. Results on seven image sequences from the SBI data set.

Sequence Method AGE pEPs pCEPS MS-SSIM PSNR CQM

Board
KNN 31.1259 26.8963 17.2561 0.7734 13.4368 21.3434

MOG2 21.5981 23.3689 15.2652 0.8433 17.0541 29.2805
IMBS-MT 2.2537 0.3201 0.0061 0.9836 36.8244 52.4920

Candela m1.10
KNN 11.2176 10.0507 5.8179 0.8158 17.3467 23.1109

MOG2 1.7044 0.7694 0.6185 0.9914 34.0895 46.9634
IMBS-MT 1.3823 0.4705 0.0957 0.9893 35.4288 44.2374

CAVIAR1
KNN 4.6259 4.0415 2.8463 0.9348 24.3250 29.9878

MOG2 3.1274 2.8412 2.3621 0.9722 29.3055 41.4591
IMBS-MT 1.2267 0.0539 0.0214 0.9967 42.2244 55.0816

CAVIAR2
KNN 7.1935 4.8910 1.4404 0.8469 18.9970 25.5783

MOG2 1.4154 0.1658 0.0997 0.9974 40.1120 53.4368
IMBS-MT 1.2948 0.0102 0.0000 0.9986 43.0235 53.7161

HumanBody2
KNN 20.9423 18.5130 15.2188 0.7783 14.5871 21.4805

MOG2 11.2767 13.4609 9.9427 0.8752 19.5258 32.1251
IMBS-MT 1.9190 0.5794 0.0534 0.9958 34.0997 45.2074

IBMtest2
KNN 21.3572 16.2995 2.3099 0.6671 14.1235 20.5705

MOG2 3.1981 1.5039 0.7083 0.9717 30.5180 38.1524
IMBS-MT 7.3508 3.2734 0.1328 0.9721 24.6275 36.4310

Toscana
KNN 19.0935 22.7581 17.5800 0.7034 16.3492 16.2754

MOG2 9.5929 12.8060 8.3773 0.8947 23.5968 23.1972
IMBS-MT 7.4109 6.9096 5.2394 0.8903 22.5367 22.0319

PSNR, it assumes values in decibels.

For the metrics AGE, pEPs, and pCEPs the lower the value,
the better is the background estimate, while for MS-SSIM,
PSNR, and CQM the higher the value, the better is the back-
ground estimate.

Discussion. The experimental results demonstrate that IMBS-
MT achieves very good results, comparable with the other con-
sidered methods. It is also possible to note that no one method
is able to obtain the best performance over all the sequences.

The main advantages of IMBS-MT over the other methods
are:

1. IMBS-MT maintains good performance also when the na-
ture of the background is highly dynamic. This is due
to the specific capacity of IMBS-MT to model scenes
with dynamic background, since IMBS-MT does not con-
sider a predefined distribution of the pixel values in the
background. When stationary objects are in the scene,
the model update mechanism of IMBS-MT produces very
good results, as demonstrated by the results on the “CaVi-
gnal” sequence.

2. IMBS-MT is a very fast algorithm, able to achieve good
results without the need of a long processing time (as
demonstrated by the computational performance analysis
given below).

4.2. Computational Performance

The functional architecture shown in Fig. 6 has been im-
plemented to take advantage of parallel execution by using the
class Thread provided by C++11. In particular, r threads runs
in parallel for creating the background model, since each thread
process one of r the regions the image is split into. In the same
way, it is also possible to obtain a fast computation of the fore-
ground mask by exploiting the parallel execution of r threads.

In order to ensure real-time performance on high resolution
images, we collected 9 video sequences of an urban scenario

Table 3. Computational load in terms of FPS on different computer display
standards for KNN (with TBB), MOG2 (with TBB), IMBS (mono-thread),
and IMBS-MT (multi-thread).

Video
Standard

Frame
Size KNN MOG2 IMBS IMBS-MT

Video CD 352×240 144.702 80.0249 35.13 150.32
HD 1360×768 18.5798 6.2748 12.49 25.31
HD+ 1600×900 13.7526 3.8475 8.42 20.72
Full HD 1920×1080 9.7816 2.9693 3.45 13.52

captured at four different resolutions and measured the com-
putational speed of IMBS-MT on an Intel(R) Core(TM) i7-
3610QM CPU @ 2.30GHz, 8 GB RAM. The results are shown
in Table 3, where the performance of IMBS-MT is compared
with the TBB parallel implementation of MOG2 and KNN al-
gorithms and with the mono-thread implementation of IMBS.
Our IMBS-MT method achieves a computational speed of more
than 13 frame per seconds on Full High-Definition (Full HD)
images, real-time performance on HD frames, and a very high
processing speed, i.e., more than 150 frames per second, on
352×240 images.

It is worth nothing that, the possibility of working with Full
HD data allows for using high-level image processing routines
after the foreground extraction, such as face recognition and
plate identification. Moreover, with the computational speed
achieved by IMBS-MT, it is possible to process simultaneously
up to four HD video streams in real-time on a single PC.

The C++ source code of IMBS-MT is publicly available and
can be downloaded from the following repository:
https://github.com/dbloisi/imbs-mt

5. Conclusions

In this paper, we have described a fast clustering-based back-
ground subtraction method, called IMBS-MT. The key aspect
of IMBS-MT is the capacity of generating an accurate back-
ground model even if no clear frames (i.e., images without
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foreground objects) are present in the image sequence in in-
put. IMBS-MT includes a mechanism for computing the back-
ground model incrementally and it has the capacity of carrying
out in parallel the background formation and foreground extrac-
tion processes.

Experimental results, obtained on the challenging sequences
of the SBI data set, demonstrate that IMBS-MT can generate
highly accurate initial background models with a very high
speed. Quantitative results obtained by IMBS-MT have been
compared with eight state-of-the-art BS methods, i.e., KNN,
MOG2, Median, SC-SOBS, WS2006, RSL2011, Photomon-
tage, and CA2008, obtaining good results with respect to six
different quality metrics. As a difference with other methods,
IMBS-MT has been designed for maintaining a good accuracy
with real-time computational speed on HD images and it can be
used to process up to four HD video streams on a single CPU
at the same time.

As future work, we intend to further improve the speed of the
algorithm by creating a GPU-based implementation for IMBS-
MT.

References

Ablavsky, V., 2003. Background models for tracking objects in water, in: ICIP
(3), pp. 125–128.

Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless,
B., Salesin, D., Cohen, M., 2004. Interactive digital photomontage. ACM
Trans. Graph. , 294–302.

Bloisi, D.D., Iocchi, L., 2009. ARGOS - A video surveillance system for boat
trafic monitoring in venice. IJPRAI 23, 1477–1502.

Bloisi, D.D., Iocchi, L., 2012. Independent multimodal background subtrac-
tion, in: CompIMAGE, pp. 39–44.

Bloisi, D.D., Iocchi, L., Pennisi, A., Tombolini, L., 2015. ARGOS-Venice boat
classification, in: AVSS, pp. 1–6.

Bloisi, D.D., Pennisi, A., Iocchi, L., 2014. Background modeling in the mar-
itime domain. Machine Vision and Applications 25, 1257–1269.

Bouwmans, T., 2011. Recent advanced statistical background modeling for
foreground detection: A systematic survey. Recent Patents on Computer
Science 4, 147–176.

Bouwmans, T., 2012. Background subtraction for visual surveillance: A fuzzy
approach, in: Handbook on Soft Computing for Video Surveillance. Taylor
and Francis Group. chapter 5, pp. 103–138.

Bouwmans, T., 2014. Traditional and recent approaches in background model-
ing for foreground detection: An overview. Computer Science Review 1112,
31–66.

Bouwmans, T., El Baf, F., Vachon, B., 2010. Statistical background modeling
for foreground detection: A survey, in: Handbook of Pattern Recognition
and Computer Vision. World scientific Publishing, pp. 181–199.

Butler, D., Sridharan, S., Bove, V.M.J., 2003. Real-time adaptive background
segmentation, in: ICASSP, pp. 349–352.

Chen, C.C., Aggarwal, J.K., 2008. An adaptive background model initialization
algorithm with objects moving at different depths., in: ICIP, pp. 2664–2667.

Cristani, M., Farenzena, M., Bloisi, D.D., Murino, V., 2010. Background sub-
traction for automated multisensor surveillance: A comprehensive review.
EURASIP J. Adv. Sig. Proc. , 1–24.

Culibrk, D., Crnojevic, V., 2010. Gpu-based complex-background segmenta-
tion using neural networks, in: IMVIP, pp. 262–275.

Fan, T., Li, L., Tian, Q., 2010. A novel adaptive motion detection based on
k-means clustering, in: ICCSIT, pp. 136–140.

Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P., 2012. Changede-
tection.net: A new change detection benchmark dataset, in: CVPR Work-
shops, pp. 1–8.

Kumar, A., Sureshkumar, C., 2013. Background subtraction based on threshold
detection using modified k-means algorithm, in: PRIME, pp. 378–382.

Li, Q., He, D., Wang, B., 2008. Effective moving objects detection based on
clustering background model for video surveillance, in: CISP, pp. 656–660.

Maddalena, L., Petrosino, A., 2012. The SOBS algorithm: What are the limits?,
in: CVPR Workshops, pp. 21–26.

Maddalena, L., Petrosino, A., 2014a. The 3dsobs+ algorithm for moving object
detection. Computer Vision and Image Understanding 122, 65–73.

Maddalena, L., Petrosino, A., 2014b. Background model initialization for static
cameras, in: Handbook on Background Modeling and Foreground Detection
for Video Surveillance. Chapman and Hall/CRC, pp. 3–1–3–16.

Maddalena, L., Petrosino, A., 2015. Towards benchmarking scene background
initialization, in: ICIAP Workshops, pp. 469–476.

Nieto, M., Cortes, A., Barandiaran, J., Otaegui, O., Sanchez, P., 2012. Adaptive
multicue background subtraction for robust vehicle counting and classifica-
tion. IEEE Transactions on Intelligent Transportation Systems 13, 527–540.

Pennisi, A., Previtali, F., Bloisi, D.D., Iocchi, L., 2015. Real-time adaptive
background modeling in fast changing conditions, in: AVSS, pp. 1–6.

Reddy, V., Sanderson, C., Lovell, B.C., 2010. A low-complexity algorithm for
static background estimation from cluttered image sequences in surveillance
contexts. EURASIP Journal on Image and Video Processing , 1–14.

Sobral, A., 2013. BGSLibrary: An OpenCV C++ background subtraction li-
brary, in: WVC, pp. 1–6.

Sobral, A., Vacavant, A., 2014. A comprehensive review of background sub-
traction algorithms evaluated with synthetic and real videos. Computer Vi-
sion and Image Understanding 122, 4–21.

Stauffer, C., Grimson, W., 1999. Adaptive background mixture models for real-
time tracking, in: ICCV, pp. 246–252.

Szwoch, G., 2015. Performance evaluation of parallel background subtraction
on gpu platforms. Elektronika: konstrukcje, technologie, zastosowanian 56,
23–27.
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