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Abstract

We address two difficulties in establishing an accurate
system for image matching. First, image matching relies
on the descriptor for feature extraction, but the optimal de-
scriptor often varies from image to image, or even patch
to patch. Second, conventional matching approaches carry
out geometric checking on a small set of correspondence
candidates due to the concern of efficiency. It may result
in restricted performance in recall. We aim at tackling the
two issues by integrating adaptive descriptor selection and
progressive candidate enrichment into image matching. We
consider that the two integrated components are comple-
mentary: The high-quality matching yielded by adaptively
selected descriptors helps in exploring more plausible can-
didates, while the enriched candidate set serves as a better
reference for descriptor selection. It motivates us to for-
mulate image matching as a joint optimization problem, in
which adaptive descriptor selection and progressive corre-
spondence enrichment are alternately conducted. Our ap-
proach is comprehensively evaluated and compared with
the state-of-the-art approaches on two benchmarks. The
promising results manifest its effectiveness.

1. Introduction
Image matching aims to seek the correspondences of

common regions across images. It is an active and funda-

mental research topic in computer vision, since it has been

an inherent part in a broad set of vision applications, such

as panoramic stitching [6], common pattern discovery [27],

object recognition [16, 28], image retrieval [31] and 3D re-

construction [1, 32]. A predominant paradigm of image fea-

ture matching, e.g., [28] involves three steps: 1) detecting

feature points and characterizing the detected points with

a chosen descriptor, 2) establishing a reduced set of cor-

respondence candidates, and 3) removing outliers from the

reduced set by referring to both photometric and geometric

consistency to get the final matching results.

Despite the popularity, there are still two main obstacles

preventing us from getting satisfactory results for feature

matching. First, most matching algorithms choose a spe-

cific descriptor. However, existing descriptors are designed

with the trade-off between distinctiveness and invariance.

The effectiveness of a descriptor depends on not only intra-

image appearance but also inter-image variation. Thus, the

optimal descriptor for matching is often image-dependent
or even region-dependent. Most matching methods do not

consider this issue. Second, geometric checking for out-

lier removal is widely adopted to enhance feature matching,

but it is of a high computational complexity. The trade-off

between accuracy and efficiency results in a compromising

mechanism. Namely, geometric checking is applied only to

a small, putative set of correspondence candidates. It de-

grades the performance in recall.

We aim at address the two aforementioned issues and

design an algorithm that adaptively and efficiently selects

good descriptors. We observe that descriptor selection

and candidate enrichment are complementary to each other.

High-quality matching results by adaptively selected de-

scriptors reveal the transformations, which give a more au-

thentic guidance on candidate enrichment. On the other

hand, the enriched candidate set serves as a better refer-

ence for descriptor selection. This observation motivated

us to cast image matching as a joint optimization problem

in which descriptor selection and candidate enrichment are

alternately carried out. Specifically, it is formulated as a la-

beling problem over a graph structure, and can be iteratively

optimized by using only graph cut [5]. It turns out that our

approach can produce matching results with high quality by

leveraging multiple descriptors, and does not compromise

in running time owing to dynamic candidate enrichment.

As an illustration, Figure 1 shows the matching results on

two pairs of images, jigsaws and painted ladies,

by using three different descriptors, SIFT [28], LIOP [37]

and GB [3], and our approach. For each feature point that

has corresponding point in the opposite image, we seek

its match by the nearest neighbor search with one of the
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(a) SIFT (b) LIOP (c) GB (d) Ours

(e) SIFT (f) LIOP (g) GB (h) Ours

Figure 1. Feature matching on two image pairs, (a) ∼ (d) jigsaws and (e) ∼ (h) painted ladies, by three different descriptors,

SIFT [28], LIOP [37] and GB [3], and our approach. Only correct matches are drawn with colors corresponding to the used descriptors.

three descriptors, and draw the match if it is correct. SIFT

shows good results owing to the highly textured patterns

in jigsaws, while the shape-based descriptor GB gives

better performance due to the strong coherence in shape in

painted ladies and fails to match jigsaws due to

the cluttered backgrounds and large view point change. This

example points out that the optimal descriptor varies from

image to image. In contrast, our method yields more correct

matchings by adaptively selecting a descriptor for matching

each point, like those shown in Figure 1(d) and 1(h).

To sum up, we integrate adaptive descriptor selection and

progressive candidate enrichment into the process of image

matching, and cast it as a graph optimization problem. The

proposed approach is comprehensively evaluated on two

benchmarks of image matching, including SNU dataset [12]

and SYM dataset [18]. The results demonstrate that our

approach can effectively recommend few but accurate cor-

respondence candidates and select a proper descriptor for

matching each feature point, thus resulting in a remarkable

performance gain.

2. Related work
In this section, we briefly review a few relevant topics.

2.1. Image matching with geometric checking

Geometric checking addresses the ambiguity arisen in

matching by detecting outliers, correspondences with in-

consistent transformations here. Voting-based approaches,

e.g., [2, 7, 8, 17], are popular for their simplicity and ef-

ficiency. RANSAC [17] is a representative method of this

class. It estimates the underlying transformation and re-

moves outliers simultaneously. Chen et al. [7] and Avrithis

and Tolias [2] performed Hough voting in the transfor-

mation space for identifying correct matches. Clustering-
based approaches, such as [9, 40], can introduce extra con-

straints to aggregate consistent clusters of matches, and

show their effectiveness in unconstrained matching cases.

However, the values of parameters for clustering, such as

the number of clusters and the thresholds for merging or

splitting clusters, vary from case to case, and are difficult to

set in advance.

Graph-based approaches are another popular branch of

geometric checking. Methods, e.g., [10, 14, 26, 41], model

the coherence between potential matches by employing a

graph structure and geometric checking is accomplished

by graph partition. However, graph partition is an NP

hard problem, and is usually solved with the continuous re-

laxation. Torresani et al. [34] efficiently solve the graph

matching problem by breaking it into subproblems. Liu

and Yan [27] handle multi-object matching via discovering

strongly connected subgraphs. In the formulation of these

methods, a vertex on the graph corresponds to a correspon-

dence. Thus, the complexity increases when the number of

correspondences becomes large. Our approach belongs to

the graph-based branch. However, unlike most approaches,

e.g., [10, 14, 26, 27, 34], of this category, the vertices in

our approach are associated with feature points instead of

matches, so our approach scales better in a large set of

match candidates. Furthermore, our approach explores the

locality of spatial dependency. Thus, it can match multiple

objects, and has a sparse graph and hence is more efficient.

2.2. Correspondence enrichment
Due to the high complexity, geometric checking is usu-

ally applied to a reduced set of match candidates, thus lead-

ing to low recall. Correspondence enrichment alleviates this

unfavorable effect. Ferrari et al. [15] duplicated matches

to the surrounding areas with similar appearance to expand

the candidate set. Chen et al. [7] investigated boundary pre-
serving local regions [21], and increased reliable matchings

inside the regions. Cho and Lee [11] proposed a Bayesian

framework for re-estimating a new reduced set, and im-

proved graph matching results. Wang et al. [36] presented

a progressive mode-seeking approach that efficiently ex-

plores the huge matching space through density sampling

guided by a smaller, confident set. The common issue of

approaches to correspondence enrichment is their sensitiv-

ity to the quality of the initial matches, because the enriched

correspondences are biased towards the initial set. Our ap-

proach performs unsupervised descriptor selection, and can

compile a better initial set. Besides, we recommend can-

didates that are either consistent with or complementary to

the initial set, and enhance the diversity of the candidate set.

347



2.3. Multiple descriptor fusion

Different descriptors capture diverse visual evidences.

Research efforts have been made on descriptor fusion for

performance improvement. A number of studies such

as [4, 30, 35, 39] have demonstrated the effectiveness of

using multiple descriptors for image matching and classifi-

cation. These approaches use fixed weights for descriptor

fusion, and neglect that optimal features for image descrip-

tion are different from image to image. To address this is-

sue, adaptive feature fusion has been carried out in recent

studies such as [22, 24, 38, 20]. Xu et al. [38] fused gradi-

ent and color data models by an adaptive selection. Kim et
al. [22] proposed a locally varying data term where multiple

data models are merged based on their discriminant powers

in the surrounding area. However, features in diverse de-

scriptors are typically of different dimensions and with dif-

ferent scales of statistics. Fusion by directly combining the

resulting features may be infeasible. Hu et al. [20] carried

out descriptor selection in the homography space. However,

their method trains one-class SVM by taking all correspon-

dence candidates as input, and may be less efficient. Lem-

pitsky et al. [23] and Hsu et al. [19] adaptively fuse multiple

flow proposals and compile the final flow map. These meth-

ods are designed to optimize over dense flow proposals, and

cannot be applied to sparse feature matching.

3. Problem statement
Given two images IP and IQ with detected feature

points UP = {uP
i }N

P

i=1 and UQ = {uQ
i }N

Q

i=1, we aim at

finding the corresponding point in UQ for each uP
i ∈ UP ,

if it exists. In this work, Hessian-Affine [29] detector is used

for its efficiency and high repeatability. Thus, the support

region of each feature point is an ellipse. Multiple descrip-

tors are applied to each feature point ui ∈ UP ∪ UQ. The

yielded feature vectors of ui are denoted by {xi,m}Mm=1,

where M is the number of the adopted descriptors. For

each uP
i ∈ UP , we compile the set of its most plausible

R matched points in IQ, Ci,m = {uQ
ir,m
}Rr=1, with descrip-

tor m and distance measure ‖xP
i,m−xQ

j,m‖. After repeating

this process for each feature point in image IP , the set of

correspondence candidates C is constructed:

C =

NP⋃
i=1

Ci, where Ci =
M⋃

m=1

Ci,m. (1)

C contains at most NP × R × M correspondences after

removing the duplicates. When R is set to NQ, C covers all

the possible matches. However, it becomes too large to be

efficiently dealt with, especially for geometric checking. In

this work, we set R = 1. The resulting C acts as the initial

match set, and will be gradually enriched.

4. The proposed approach

Our approach formulates the task of image matching as

an energy minimization problem on a graph. In this section,

we introduce the graph structure, energy function, optimiza-

tion process and implementation details of our approach.

4.1. Graph construction

We construct a graph G = (V, E). In G, each vertex

vi ∈ V corresponds to feature point uP
i in image IP , and

the number of vertices |V| is NP . The edge eij ∈ E is

added to link vi and vj if uP
j is one of the spatially k near-

est neighbors of uP
i . Each vertex vi is associated with a

composite variable �i = [si, ti], which represents that uP
i is

matched to uQ
si by using selected descriptor ti. Therefore,

the domain of �i is L = S × T , where S = {1, 2, ..., NQ}
and T = {1, 2, ...,M}.

By the constructed graph G, the task of image feature

matching in this work becomes a graph labeling problem.

Specifically for matching images IP and IQ, it is cast as

seeking a plausible labeling � = [�1 ... �i ... �NP ], which

specifies which corresponding point in IQ is and which de-

scriptor is selected for matching each feature point uP
i in

IP . For the ease of explanation, we similarly define s and t
as s = [s1 ... sNP ] and t = [t1 ... tNP ], respectively.

4.2. Energy Function

For boosting the performance in both accuracy and ef-

ficiency, we incorporate adaptive descriptor selection, geo-

metric checking, and correspondence enrichment into im-

age matching. To that end, we seek a good labeling � =
[�1 ... �NP ] by minimizing the following energy function

J(�) =
∑
vi∈V

Di
p(�i, Ci) + λ1

∑
vi∈V

Di
d(�i)

+ λ2

∑
eij∈E

V ij
g (�i, �j) + λ3

∑
eij∈E

V ij
s (�i, �j), (2)

where λ1, λ2, and λ3 are three non-negative constants. G =
(V, E) is the constructed graph. Ci in Eq. (1) is set of the

initial match candidates for feature point uP
i , and will be

gradually expanded during matching.

There are four terms introduced in the designed energy

function Eq. (2), including two data terms, Di
p and Di

d,

and two pairwise terms, V ij
g and V ij

d . For data terms, Di
p

considers the photometric similarity of the matched points,

while Di
d estimates the discriminant power of the selected

descriptor in the surrounding region. For pairwise terms,

V ij
g ensures the geometric consistence between neighbor-

ing correspondences, while V ij
s enforces the smoothness of

the selected descriptors. The definitions of the four terms

and their justification are given in the following.
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4.2.1 Data term Di
p

Set Ci covers the matched candidates of feature point uP
i .

The variable �i = [si, ti] specifies the match (uP
i , u

Q
si) and

the selected descriptor ti for uP
i . We take the photometric

consensus into account, and define data term Dp as

Di
p(�i, Ci) =

{
∞, if uQ

si /∈ Ci,
f(i,si,ti)

max(f(i,i∗,ti),ε)
, otherwise,

(3)

where ε is a small constant used to avoid the problem of

dividing by zero. The photometric dissimilarity function

f(a, b, c) between uP
a and uQ

b under descriptor c is given as

f(a, b, c) = dist(xP
a,c,x

Q
b,c), (4)

where dist(xi, xj) is the distance between xi and xj and we

use Euclidean distance in all the experiments. i∗ is index of

the most matched point of uP
i , i.e.,

i∗ = argmin
j∈S

f(i, j, ti). (5)

Data term Di
p in Eq. (3) excludes the matches that do

not belong to the candidate set by setting their energy as in-

finity. For candidates, we consider normalized photometric

dissimilarity via dividing by the distance to its the nearest

neighbor. The normalized dissimilarity measure alleviates

the variety of descriptors, and allows us to conduct cross-

descriptor comparisons. In brief, the larger the value is, the

less possible uP
i matches to uQ

si with descriptor ti.

4.2.2 Data term Di
d

While Di
p measures the appearance dissimilarity between

matched points with a descriptor, Di
d estimates the discrim-

inant power of that descriptor at the feature point. Specifi-

cally, it is defined as

Di
d(�i) =

f(i, si, ti)
1
k

∑
eij∈E f(j, si, ti)

, (6)

where k is the number of the spatial neighbors of uP
i , and

distance f is given in Eq. (4).

The idea behind Eq. (6) is that descriptor ti is consid-

ered effective at uP
i if it is discriminant enough within the

neighborhood of uP
i . Otherwise, it introduces unfavorable

ambiguity in matching, and is no longer an effective de-

scriptor. Thus, this term penalizes descriptors that cannot

distinguish the correspondence (uP
i , u

Q
si) from its neighbor-

ing correspondence (uP
j , u

Q
si).

4.2.3 Pairwise term V ij
g

For two neighboring points uP
i and uP

j , i.e., eij ∈ E , their

correspondences ci = (uP
i , u

Q
si) and cj = (uP

j , u
Q
sj ) are ob-

tained by referring to �i and �j , respectively. Since the sup-

port region of each feature point is an ellipse in this work,

the affine transformation with 6 degrees of freedom, Ti, can

be inferred for correspondence ci, and reveals the geometric

evidence around uP
i . Similarly, Tj is inferred for cj .

Pairwise term V ij
g is developed upon the observation that

nearby feature points usually reside in the same object, and

hence undergo similar transformations. We hence prefer a

geometrically smooth matching field by defining V ij
g as

V ij
g (�i, �j) = 1− exp (−frep(ci, cj , Ti, Tj)/σ), (7)

where σ is a positive constant, and frep is the reprojection
error [13], which measures the geometric inconsistency be-

tween two correspondences ci and cj with respectively as-

sociated affine transformations Tj and Ti, i.e.,

frep(ci, cj , Ti, Tj) = (dci|Tj
+ dcj |Ti

)/2, (8)

where

dci|Tj
= (‖Tj(u

P
i )− uQ

si‖+ ‖T
−1
j (uQ

si)− uP
i ‖)/2, (9)

and dcj |Ti
is similarly defined.

4.2.4 Pairwise term V ij
s

The effective descriptors for two neighboring feature points

on the same object are usually the same due to repeatedly

appeared patterns within the object. Take Figure 1 for an

example. SIFT descriptor is consistently better in the whole

image jigsaws, and GB descriptor is consistently better

for the second image painted ladies. This observa-

tion can serve as a good prior for descriptor selection, and

alleviates the effect caused by noises. To this end, the pair-

wise term V ij
s is given by

V ij
s (�i, �j) =

{
0, if ti = tj ,

1, otherwise,
. (10)

It encourages the smoothness of the selected descriptors.

4.3. Optimization

Directly solving Eq. (2) to optimize the labeling � is fea-

sible by using existing solvers, such as graph cut. Never-

theless, we want to further speed up the optimization, and

carry out progressive enrichment of match candidates. To

this end, we divide labeling � into two parts, s and t. An it-

erative, alternate strategy is adopted to optimize s and t and

enrich C = {Ci}N
P

i=1 in Eq. (1). At each iteration, one of the

three variables is optimized or enriched while keeping the

others fixed, and then their roles are switched sequentially.

Iterations are repeated until convergence or the maximum

number of iterations is reached.
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4.3.1 On optimizing t

The pairwise term V ij
g in Eq. (7) is irrelevant to t. By fixing

s and C, the optimization problem in Eq. (2) becomes

J(t) =
∑
vi∈V

Di
p([si, ti], Ci) + λ1

∑
vi∈V

Di
d([si, ti])

+ λ3

∑
eij∈E

V ij
s ([si, ti], [sj , tj ]). (11)

The first two terms in the right-hand side of Eq. (11)

jointly yield the new data term, in which the cost of as-

signing ti to vertex vi is computable. Thus, we efficiently

optimize t in Eq. (11) by using graph cut [5].

4.3.2 On optimizing s

By fixing t and C, the optimization problem in Eq. (2) is

similarly reduced to

J(s) =
∑
vi∈V

Di
p([si, ti], Ci) + λ1

∑
vi∈V

Di
d([si, ti])

+ λ2

∑
eij∈E

V ij
g ([si, ti], [sj , tj ]), (12)

and can also be solved via graph cut [5].

4.3.3 On enriching C

For each feature point uP
i , the candidate set Ci is gradually

enriched to improve recall. We have tried several ways for

enriching Ci, and found that two diverse ways jointly work

best in our implementation. Namely, we seek two of the k
nearest neighbors of uP

i as references, and each reference

recommends uP
i an additional match. The first reference,

denoted by uP
i∗1

, is the most concerted neighbor, i.e., the one

that contributes the least energy in Eq. (2). It is most likely

to be matched correctly. The other, denoted by uP
i∗2

, is the

one with the strongest geometrically inconsistency with uP
i .

It brings the complementary information. Specifically, the

two references are defined as

i∗1 = argmin
{j|eij∈E}

Dj
p(�j , Cj) + λ1D

j
d(�j)

+
∑

{n|ejn∈E}

(
λ2V

jn
g (�j , �n) + λ3V

jn
s (�j , �n)

)
, (13)

and

i∗2 = argmax
{j|eij∈E}

V ij
g (�i, �j). (14)

We apply the affine transformations of the two reference

neighbors to uP
i , seek the closest feature points in image

IQ, and add the sought feature points to Ci.

Algorithm 1: The proposed approach

Input: Two sets of detected features UP and UQ,

Max iteration T ;

Output: The labeling � = (s, t);
Initialize �; (Section 4.4);

Construct the graph G = (V, E); (Section 4.1) ;

Iteration←− 1 ;

while Iteration < T && not converge do
if Iteration ! = 1 then
∀vi ∈ V , enrich Ci. (Section 4.3.3);

Optimize t by solving Eq. (11). (Section 4.3.1);

Optimize s by solving Eq. (12). (Section 4.3.2);

Iteration←− Iteration + 1;

4.4. Implementation details

We initialize the label �i = (si, ti) for each vertex vi
by calculating the ratio between the distance to its nearest

neighbor and to its 2nd nearest neighbor by each descriptor,

and get M ratios. Then we initialize ti as the descriptor with

the smallest ratio, and si as the nearest neighbor measured

by descriptor ti.
There are five parameters in our approach, including

neighborhood size k in Section 4.1, leading coefficients λ1,

λ2, and λ3 in Eq. (2), and hyperparameter σ in Eq. (7). They

are tuned and fixed for each adopted dataset. To conclude

this section, we summarize our approach in Algorithm 1.

Using multiple descriptors helps improve the perfor-

mance, but extracting multiple descriptors increases the

computational cost. There exists a trade-off between match-

ing accuracy and efficiency while our approach offers a flex-

ible and practical framework for both single-descriptor and

multiple-descriptor matching.

5. Experimental results
A comprehensive study of our approach is presented in

the section. First, we introduce the experimental setup and

the evaluation metrics. Then, three sets of experiments are

conducted, including the comparisons with the state-of-the-

art approaches on two benchmarks, the effect of enrichment,

and the advantages of employing multiple descriptors.

5.1. Experimental setup

SNU dataset [12] and SYM dataset [18] are used in our

experiments. They consist of 6 and 46 pairs of images to

be matched, respectively. Various challenges such as mul-

tiple object matching with cluttered backgrounds in SNU

dataset and variations in lighting conditions (day/night),

ages (old/nowadays scene) and rendering styles (photo-

graph/drawing) in SYM dataset make the two datasets a
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Table 1. Performance in mAP (%) on SNU dataset [12].

Descriptor SIFT LIOP DAISY RI GB ALL
SM [25] 55.30 38.74 46.71 34.57 12.13 55.72

ACC [9] 60.28 29.83 36.49 15.10 8.88 59.59

HV [7] 60.12 43.97 50.06 37.14 12.08 71.14

PGM [11] 65.66 48.33 59.37 39.19 12.71 67.55

CONCAT. 39.70

Ours (w/o enrich.) 69.70 48.52 55.47 23.53 9.84 76.75

Ours (w/ enrich.) 72.29 58.31 64.12 38.66 12.59 81.81

good test bed for performance evaluation. We use Hessian-

affine detector [29] for its high repeatability and we adopt

five complementary descriptors for capturing diverse visual

cues, including SIFT [28], LIOP [37], DAISY [33], raw

intensities (RI) and geometric blur (GB) [3]. The RI de-

scriptor extracts the grey-level pixel intensities of the fea-

ture regions in a raster scan order. Four state-of-the-art ap-

proaches are adopted for comparison, including SM [25]

(a graph-based method), ACC [9] (a clustering-based ap-

proach), HV [7] (a voting-based method) and PGM [11]

(a correspondence recommendation framework). The four

compared approaches are designed to work with a single de-

scriptor. We can extend them for handling multiple descrip-

tors by concatenating all the initial candidates produced by

the five descriptors. For fair comparison, the reprojection

error is used as the dissimilarity measure between corre-

spondences. When using a single descriptor, we set R = 5
for all approaches, including ours. R is set as 1 in the cases

where multiple descriptors are adopted. We also implement

the method in [30], CONCAT., which concatenates multi-

ple descriptors to match images. In our implementation, we

concatenate all the five adopted descriptors, and apply the

method in [7] for geometric verification.

5.2. Evaluation metrics

The performance of a matching algorithm is presented in

the forms of precision and recall jointly. The two measures

are defined as

PRECISION =
nTP

nTP + nFP
and RECALL =

nTP

nP
, (15)

where nTP and nFP is the returned numbers of correspon-

dences which are correctly and wrongly identified by a

matching method, respectively, and nTP + nFP is the num-

ber of total returned correspondences. nP is the number of

points in IP whose corresponding points exist.

For each matching approach, all the detected correspon-

dences are sorted by its own criterion, such as the density

values in HV and the contributed energy values in our ap-

proach. Specifically, the energy value for correspondence

ci = (uP
i , u

Q
�i
) is defined as

D
i
p(�i, Ci) + λ1D

i
d(�i) +

∑

{n|ein∈E}

(
λ2V

in
g (�i, �n) + λ3V

in
s (�i, �n)

)
.

(16)

Table 2. Performance in mAP (%) on SYM dataset [18].

Descriptor SIFT LIOP DAISY RI GB ALL
SM [25] 18.92 16.79 22.72 7.99 32.57 40.22

ACC [9] 26.74 19.49 29.97 10.70 29.28 42.36

HV [7] 22.21 18.69 26.92 11.88 38.28 43.79

PGM [11] 29.46 22.36 35.01 15.49 47.53 48.01

CONCAT. 13.36

Ours (w/o enrich.) 26.53 20.93 30.30 11.67 41.70 46.67

Ours (w/ enrich.) 30.04 27.27 32.63 15.84 41.00 49.35

By sampling on the sorted lists, we get a set of preci-

sions and recalls and present them with a ”1−precision” vs.

”recall” curve (PR curve) on an image pair, or mean av-
erage precision (mAP) and mean accuracy (mAccu) on a

dataset. The mAP is the mean of the average precision of

each image pair in a dataset, while the average precision is

calculated as the mean of precisions with different numbers

of returned correspondences. Besides, we set the constraint

that every matching algorithm can detect at most one cor-

responding point for each uP
i , so the number of returned

correspondences, namely nTP + nFP, is at most NP . We

then term the recall when we set nTP + nFP to its largest

value as accuracy and mean accuracy (mAccu) is the aver-

age accuracy of a dataset.

5.3. Comparisons on two benchmark datasets

In this set of experiments, we compare our approach with

the state-of-the-art approaches on SNU and SYM datasets.

The five descriptors, SIFT, LIOP, DAISY, RI, and GB are

used in the experiments. Each approach, including SM,

ACC, HV, PGM, and ours, is applied to work with the five

descriptors individually and jointly. The performance in

mAP is reported in Table 1 and Table 2. The best perfor-

mance by using a single descriptor is underlined and the

one with overall best performance is given in bold. Our

method with multiple descriptors get 81.81% and 49.35%,

the highest performance, on SNU dataset and SYM dataset,

respectively. We would like to mention that the perfor-

mances of directly solving Eq. (2) by graph cut are 81.61%
and 48.34%, respectively, which are only slightly different

from the performance by the alternate solution. Note that

we use the real detector, Hessian-affine detector, so the per-

formance cannot be directly compared to the one reported

in [18] with the grid detector, which is a synthetic detector.

As reported in Table 1, SIFT consistently outperforms

the other four descriptors with each baselines on SNU

dataset. On the contrary, GB gives the best performance

on SYM dataset in Table 2. The goodness of descrip-

tors varies from dataset to dataset. Our approach allows

cross descriptor verification and adaptive descriptor selec-

tion. The results show that our approach effectively fuses

the five descriptors and gets superior performance com-

pared to the state-of-the-art approaches on the two datasets
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Table 3. Performance of our approach with and without descriptor

selection and enrichment, respectively, in mAP (%).

SNU SYM

w/o selec. w/ selec. w/o selec. w/ selec.

w/o enrich. 73.16 76.75 42.99 46.67

w/ enrich. 74.22 81.81 44.52 49.35

even when they use multiple descriptors. While these ap-

proaches carry out geometric checking, our approach fur-

ther considers intra-descriptor photometric similarity and

the discriminability of each descriptor. The method CON-

CAT. doesn’t work well because simple concatenation of

multiple descriptors neglects that the effectiveness of de-

scriptor is image-dependent. It is notable that our approach

with a single descriptor remarkably outperforms the base-

lines on SNU dataset, and is still comparable to PGM,

which can recommend plausible correspondences, on SYM

dataset with GB. It is because our approach finds the lo-

cally smooth correspondences. The local property works

well with multiple object matching on SNU dataset, but it

is less favorable on SYM dataset, in which the image pair

undergoes a global transformation.

In order to evaluate the component of descriptor selec-

tion in our approach, we turn off this component by setting

λ1 and λ3 in Eq. (2) to zero and optimizing only label si de-

scribed in Section 4.1. Table 3 compares the performance

of our approach and this variant. The results with descriptor

selection are much better than those without it, indicating

the advantage of using descriptor selection in our approach.

5.4. Effect of enrichment

To show the effect of enrichment, we present two sets of

experiments where our method is applied with all the five

descriptors under two settings: with enrichment and with-

out enrichment. First, we show the results with and without

enrichment with different values of parameter R. R con-

trols the size of C in Eq. (1). The results on SNU dataset and

SYM dataset are shown in Figure 2 with x axis represent-

ing the value of R and y axis standing for mAccu. mAccu

measures the portion of correctly matched interest points.

It reveals whether we find additional good matches or not

in the step of enrichment. With enrichment, we see highly

boosted performance. In the second experiment, we com-

pare the results with and without enrichment at each opti-

mization iteration. The results are shown in Figure 3, where

x axis represents the iteration number and y axis represents

mAccu. The enrichment happens after the first iteration,

and we can see the significant performance gain by enrich-

ment on the two datasets. In addition, our approach almost

converges after two iterations. Thus, we only alternate the

three-step optimization twice for time efficiency.

R
1 2 3 4 5

m
A

cc
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(a) (b)
w/o enrichment w/ enrichment

Figure 2. Performance in mAccu with different values of R of our

approach on (a) SNU dataset and (b) SYM dataset.
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Figure 3. Performance in mAccu along the iterative optimization

procedure on (a) SNU dataset and (b) SYM dataset.

5.5. Advantages of using multiple descriptors

We investigate into the performance gain from employ-

ing multiple descriptors comparing to a single descriptor

by applying our approach. The visualization of the match-

ing results with different descriptors on mickeys of SNU

dataset and bdom of SYM dataset are shown in Figure 4

and Figure 5 respectively. Only correct correspondences

are drawn in specific colors with respect to the adopted de-

scriptors (SIFT in orange, LIOP in blue, DAISY in green,

RI in magenta and GB in cyan). In Figure 4, there are three

common objects. The overall result by DAISY is the best

among the five descriptors, but it seems that if we use SIFT,

we can have even better results for matching some parts of

the image, i.e. the Mickey doll. The performance of SIFT

on matching the cup of instant noodles is poor while DAISY

in this case finds the most correspondences on it. With-

out making tradeoff of picking a descriptor, our method

can adaptively select a good descriptor for matching each

point, just as shown in Figure 4(f) where our approach un-

supervisedly picks SIFT for matching the Mickey doll and

DAISY for matching the cup noodles. We can have similar

observation in Figure 5 where our approach selects SIFT

for matching the dome and mostly GB for the other regions.

The results in Figure 4 and Figure 5 show the advantage of

applying our approach to multiple, complementary descrip-

tors.

5.6. Comparisons of running time performance

We compare our approach with the baselines in terms of

running time. All the experiments are conducted on a PC

equipped with Intel i7-4770 CPU and 16GB memory. Our

approach is implemented in Matlab and with the graph cut
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(a) SIFT (b) LIOP (c) DAISY (d) RI (e) GB (f) Ours

(219/516) (133/516) (270/516) (130/516) (14/516) (310/516)

Figure 4. Matching results of our approach by using the five descriptors individually (a)-(e) and jointly (f) on image pair, mickeys of

SNU dataset. Correct matchings are drawn with the colors specifying the adopted or selected descriptors. The last row shows ( nTP / nP ).

(a) SIFT (b) LIOP (c) DAISY (d) RI (e) GB (f) Ours

(288/1189) (82/1189) (66/1189) (10/1189) (278/1189) (407/1189)

Figure 5. Matching results of our approach by using the five descriptors individually (a)-(e) and jointly (f) on image pair, bdom of SYM

dataset. Correct matchings are drawn with the colors specifying the adopted or selected descriptors. The last row shows ( nTP / nP ).

Table 4. Running time on SNU dataset [12] and SYM dataset [18].

Dataset # of points SM ACC HV PGM Ours

SNU 1100±200 3.26 s 452.44 s 3.02 s 82.21 s 1.93 s

SYM 1200±600 4.67 s 1034.9 s 4.36 s 85.22 s 3.95 s

solver [5] in C++. Because convergence is reached within

2 iterations in most cases, we run our algorithm for 2 iter-

ations on all the experiments. When our approach collabo-

rates with M = 5 descriptors on SNU dataset [12], in which

each image in average has 1,100 detected feature points, its

running time per iteration is around 1.33 seconds (0.20 sec-

onds for optimizing t, 0.39 seconds for optimizing s and

0.73 seconds for enrichment). If we directly solve t and s
in Eq. (2), the running time per iteration is around 2.85 sec-

onds (2.08 seconds for optimizing t and s, and 0.74 seconds

for enrichment). Solving Eq. (2) alternately is about 4 times

faster than solving it directly when optimizing t and s, but

both ways get similar performance. In addition, we com-

pare our running time with other baselines and report the

results in Table 4 on SNU dataset and SYM dataset. We im-

plement SM and HV, and use the released implementations

by [9] and [11] for ACC and PGM, respectively. As shown

in Table 4, our method is much faster than ACC and PGM

while comparable to SM and HV. The results demonstrate

that our approach is superior to the four state-of-the-art ap-

proaches in both accuracy and efficiency.

More results and the code will be available at

https://sites.google.com/site/yuantinghu/publications/featmat.

6. Conclusions
We have introduced an image matching approach with

the capability of point-specific descriptor selection, cross

descriptor geometric checking, and progressive correspon-

dence enrichment. It is formulated as an optimization prob-

lem on a graph, and can be effectively solved by using

the graph-cut algorithm. Through the iterative optimiza-

tion process, the plausible match candidates are gradually

revealed by taking their consistence with the nearby corre-

spondences into account, while more and more correct cor-

respondences are detected with the aid of enriched candi-

dates. The proposed approach has been comprehensively

evaluated on two benchmark datasets. Experimental results

show that it outperforms the state-of-the-art methods in both

the aspects of accuracy and efficiency. In the future, we

would like to apply the proposed approach to vision appli-

cations, such as scene parsing and co-segmentation, where

high-quality and dense matching is crucial. It would also be

interesting to investigate how our approach to sparse match-

ing collaborates with approaches to dense matching, such as

image alignment and optical flow.
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