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a b s t r a c t 

With the increasing number of machine learning methods used for segmenting images and analyzing 

videos, there has been a growing need for large datasets with pixel accurate ground truth. In this let- 

ter, we propose a highly accurate semi-automatic method for segmenting foreground moving objects 

pictured in surveillance videos. Given a limited number of user interventions, the goal of the method 

is to provide results sufficiently accurate to be used as ground truth. In this paper, we show that by 

manually outlining a small number of moving objects, we can get our model to learn the appearance 

of the background and the foreground moving objects. Since the background and foreground moving 

objects are highly redundant from one image to another (videos come from surveillance cameras) the 

model does not need a large number of examples to accurately fit the data. Our end-to-end model 

is based on a multi-resolution convolutional neural network (CNN) with a cascaded architecture. Tests 

performed on the largest publicly-available video dataset with pixel accurate groundtruth (changde- 

tection.net) reveal that on videos from 11 categories, our approach has an average F-measure of 0.95 

which is within the error margin of a human being. With our model, the amount of manual work 

for ground truthing a video gets reduced by a factor of up to 40. Code is made publicly available at: 

https://github.com/zhimingluo/MovingObjectSegmentation 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

With millions of hours of videos recorded daily in the world,

he need for efficient video analytic methods is becoming a glaring

ssue. Considering that a large number of videos are recorded by

urveillance cameras, video analytics allows for multiple surveil-

ance tasks including object tracking [38] , scene understand-

ng [16] , anomaly detection [23] , and traffic analytics [26] to name

 few. In the last decade, a growing number of machine learning

ethods have been used to solve these issues [9,24] . Although dif-

erent, machine learning methods all share a common denominator

hich is their need for large annotated datasets on which to train.

nfortunately, video annotation is a tedious task, especially when

t comes to the annotation of foreground moving objects. 

Of course, foreground moving objects can be outlined by fully

utomatic [mostly background-subtraction related [6] ] methods.

lthough these methods are fast and widely available, they are

ar from being sufficiently accurate for their results to be used

s ground truth [5] . As reported on the changedetection.net (CD-

et) website, the only videos for which fully automatic motion
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etection methods are highly accurate are the so-called Baseline

ideos. Baseline videos are those for which the scene contains well-

ontrasted and well-illuminated macroscopic moving objects pic-

ured in front of a fix background with a rigorously fixed camera,

ecording video at a high frame rate and without hard shadows.

s reported on the website, whenever one of these conditions is

iolated, the F-measure of the segmented videos drops below 0.88

and very often below 0.75) which is far too low for it to be used

s ground truth. 

As an alternative, one can manually annotate every foreground

oving object and then use it as ground truth. Although very ac-

urate, manual annotation is tedious and very time consuming. Ex-

ensive empirical evaluations led in our lab reveal that even with a

ell-design and ergonomic annotation software, manual segmen-

ation may take up to 60 s per frame. Thus, the manual labeling of

 4 min video ( ∼ 70 0 0 frames) may take several days for a single

erson. 

In this letter, we propose a highly accurate semi-automatic

ethod for segmenting foreground moving objects. The proposed

olution has two main objectives: 1) produce segmentation maps

ufficiently accurate to be used as ground truth and 2) require

s little user intervention as possible. The proposed solution is

ased on a convolution neural network (CNN) model [19] . The

ain reason for using CNN comes with its ability to learn its own
thod for segmenting moving objects, Pattern Recognition Letters 
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features which is far better than using hand-design features. CNN

are also translation invariant which is the key feature for dealing

with background motion. Furthermore, the convolution operation

can be easily parallelized on a GPU which makes CNN a fast pre-

dictor. 

The outline of our method is straightforward. Given a certain

video, the user first outlines foreground objects from a small set

of frames. The method then uses those manually annotated im-

ages as training data. Once training is over, the method general-

izes by automatically labeling the remaining frames of the video.

One important characteristic of our method is that it trains and

generalizes on images from the same video . Since the video comes

from a single (and usually fix) camera, its content if very redun-

dant and so the number of manually segmented frames required

to properly train our model does not need to be large. This is un-

like other machine learning tasks which train and test on images

containing very different content such as ImageNet [15] and CI-

FAR datasets [ 18 ]. Our approach also differs from traditional mo-

tion detection method as it processes each frame independently

without motion features and without having to maintain a back-

ground model. 

We explore various CNN configurations such as a multiresolu-

tion CNN, a cascaded architecture, the FCN-8s [24] model as well

as various training configurations. Results obtained on the CDnet

dataset shows that our approach is as accurate as a human being

with an average F-measure of 0.95. 

The contributions of this letter are two folds: 

• We propose what we believe is the first machine learning

method for ground truthing videos. The method is both highly

accurate and requires a small number of user interactions. 
• Following an extensive evaluation on the CDnet dataset, we

identify the category of videos for which our method is effec-

tive as well as the number of frames that ought to be manually

labeled for each category. 

2. Related work 

Video foreground detection methods can be classified into two

large classes: the fully-automatic methods and those involving user

interaction. 

The fully-automatic video foreground segmentation methods

are usually based on a background model which is updated as the

video streams in. The foreground pixels are those whose color (or

texture feature) deviates from the background model. The most

widely used video foreground segmentation methods implement

a parametric background model. This includes those using a per-

pixel single Gaussian model [37] , a mixture of Gaussians [32] , gen-

eralized Gaussian mixture [1] , and Bayesian models [28] to name

a few. Parametric models can deal with videos with small back-

ground movement i.e. moving trees or water waves but are very

sensitive to camera movement due to jitter or a pan-til-zoom cam-

era motion. 

In the past five years, various non-parametric models have

achieved good performances. Barnich and Van Droogenbroeck

[3] proposed a method called “Vibe” whose per-pixel background

model is made of a collection of N pixel values randomly selected

over time. Furthermore, when a pixel is updated, its neighboring

pixels are also updated which makes Vibe less sensitive to ghosting

artifacts. Hofmann et al. [13] proposed an extension to Vibe by al-

lowing the decision threshold and the learning rate to dynamically

change over time. Another improvement of Vibe is the so-called

“SubSCENE” method proposed by St-Charles et al. [31] which uses

both color and local binary pattern features to improve the spatial

awareness of the method. It also has a per-pixel feedback scheme
Please cite this article as: Y. Wang et al., Interactive deep learning me

(2016), http://dx.doi.org/10.1016/j.patrec.2016.09.014 
hat dynamically adjusts its parameters. From the same authors,

he so-called “PAWCS” method [30] is an extension of SubSCENE

hat implements a real-time internal parameter updating strategy.

t also adds a persistence indicator feature to the color and local

inary patterns (LBP) feature as well as a visual word model. 

Many other background subtraction methods have been pro-

osed, some involving a one-class support vector machine (SVM),

thers a neural network, a Parzen window estimator, a princi-

al component analysis (PCA) model, some fuzzy logic, and many

ore (refer to [6] for an extensive survey). However, none of

hese methods have been shown sufficiently accurate to produce

roundtruth quality results. 

As an alternative, some foreground segmentation methods rely

n user interaction to improve accuracy. For these methods, the

ser provides information on the location of the foreground ob-

ects as well as the background. Manual annotation can be in the

orm of a bounding box around each foreground object or a series

f brush strokes drawn on top of foreground and background areas.

pproaches for semi-automatic segmentation often rely on graph-

ut [21,29] . Unfortunately, these methods being oriented towards

he segmentation of 2D images, segmenting a video would require

he manual annotation of every frame. As a solution, Bai and Sapiro

2] proposed and extended 3D spatio-temporal graph cut method

hat implements a 6-pixel neighborhood (4 spatial and 2 temporal

eighbors). In [34] , users are asked to give interaction not only on

ach image, but also the x-t dimension to provide additional tem-

oral information. The method by Gong et al. [9] ask the user to

abel the foreground and background in the first frame of the video

nd use this to train two one-class SVMs for each pixel. One im-

ortant inconvenience of such algorithms comes with their way of

egmenting the entire video as a whole. Although it works well for

egmenting one or few objects seen thought the entire video, these

ethods cannot account for new moving objects. They are also in-

ffective on low-framerate videos or when the camera moves due

o pan-till-zoom motion. 

. Proposed solution 

The proposed method can be summarized as follows: based on

 subset of frames in which foreground moving objects have been

anually outlined, our method trains a foreground-background

odel that is then used to label the rest of the video. As men-

ioned earlier, the goal of our method is two fold: 1) get segmen-

ation results sufficiently accurate to be used as ground truth and

) get those results with as little user intervention as possible. To

chieve these goals, we implemented a convolution neural network

CNN) model. The reason why our method gets to learn an accu-

ate foreground-background model from a limited amount of train-

ng data comes from the very nature of surveillance videos. Being

ecorded from surveillance cameras, videos contain a highly re-

undant content (same background through the video with mov-

ng objects having similar orientation, look, and size). This lack

f diversity allows for our method to quickly learn a foreground-

ackground model from a very limited number of examples. Fur-

hermore, since the goal is to generalize to other frames from the

ame video (and not to other videos) our method benefits from a

ertain level of overfiting which is typical when a limited number

f samples are used for training. 

As shown in Fig. 1 , our approach implements a three-step pro-

edure: (i) foreground moving objects are first manually delineated

rom a set of training frames, (ii) these frames are then used to

rain a foreground-background segmentation model, and (iii) once

raining is over, the model labels the remaining frames of the

ideo. Note that, as will be shown in the results section, the re-

ulting segmentation map is sufficiently accurate for not requiring

ny post-processing. 
thod for segmenting moving objects, Pattern Recognition Letters 
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Fig. 1. The pipeline of our model. 
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.1. Selecting and labeling training frames 

Given an input video, the first step is to select and manually

egment N training frames. In that perspective, different selection

trategies can be considered. One could select one frame out of M 

N ,

here M is the total number of frames in the video. One could also

andomly select N frames or manually select N frames. Note that

he latter approach requires extra user intervention which we look

orward to minimize as much as possible. But as will be shown in

he results section, the frame selection strategy is heavily corre-

ated to the content of the video and in some cases, manual selec-

ion is unavoidable, especially for videos with sparse activity. 

Once N training frames have been selected, the user roughly

utlines a region of interest (ROI) around the area where fore-

round moving objects are to occur. The reason for this ROI is to

xclude regions (such as the sky or buildings) in which no moving

bjects are to appear. This allows to speed up the training phase

nd avoid false detections outside the ROI. As for manual delin-

ation of moving objects, we use a custom-made software which

reatly simplifies annotation. 

.2. CNN models used for training and testing 

The method we used for learning the foreground-background

odel is a deep CNN. The main reasons for choosing CNN is two-

old. First, a CNN has the sole ability of learning features that best

t a given set of data. This has a huge advantage over pre-existing

pproaches which banks on manually selected features such as

istogram of oriented gradients (HOG) [7] , scale-invariant feature

ransform (SIFT) [25] , or local binary pattern (LBP) [11] . Further-

ore, unlike conventional hand-design features, learned features

ome from multiple layers which focus on various level of details

n the video. Second, since CNNs are based on an easily parallelized

onvolution operators, the prediction phase is very fast. 

In this section, we propose three CNN models which we thor-

ughly test in the results section. 

.2.1. Basic CNN model 

A CNN is typically made of a series of convolutional layers, ac-

ivation layers, pooling layers and fully-connected layers [10,22] .

NNs are generally used for classifying images and, as such, are

sually fed with a 3-channel color image and outputs the most

ikely class label associated to that image [19] . In our case, the

oal is to predict a class category (foreground/background) for each

ixel instead of the entire image. In that perspective, we extract a

1 × 31 patch around each pixel and consider that patch as a small

o-be-classified squared image [8] . 
Please cite this article as: Y. Wang et al., Interactive deep learning me
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The detailed configuration of our basic CNN model is provided

n Table 1 and illustrated in Fig 3 . As can be seen, our basic CNN

odel contains 4 convolutional layers and 2 fully connected (FC)

ayers. Each convolutional layer uses a filter size of 7 × 7 and rec-

ified linear unit (ReLU) as the activation function. Also, the first

 convolutional layers come with a 2 × 2 max pooling layer of a

tride of 1 as well as a zero padding of one pixel at the bottom

nd right border. The first fully connected (FC) layer has an output

f 64-dimension features while the second has a one-dimension

utput. For the second FC layer, a sigmoid function is used as an

ctivation function to convert the output prediction between 0 and

 which corresponds to the probability for a given pixel of being

art of the foreground. 

By considering the CNN output as a likelihood probability, we

se a cross entropy loss function for training [4] : 

oss = − 1 

K 

K ∑ 

k =1 

[
C k log ˆ p k + (1 − C k ) log 

(
1 − ˆ p k 

)]
, (1) 

here K is the number of training pixels, C k is the class label in

he ground truth and ˆ p n is the predicted foreground probability.

ote that during training, each pixel is treated independently and

ithout any motion features. 

.2.2. Multi-scale CNN model 

The basic CNN model is not void of limitations. One of its main

rawback comes with from its fix input patch size. Since it pro-

esses patches of size 31 × 31, the basic CNN model is good for

istinguishing foreground and background objects whose size is

n the order of 31 × 31 or less. Unfortunately, videos often con-

ain moving object significantly larger than that. This typically hap-

ens when foreground moving objects are close to the camera. As

hown in Fig. 2 , large moving objects often carry out large uni-

orm textureless areas which can be miss-classified as background.

ig. 2 shows a large car which has been inappropriately segmented

y the basic CNN model. 

We can overcome this issue by implementing a multi-scale CNN

odel as illustrated in Fig. 4 . Given a to-be-segmented 2D image I ,

e first resize it into two different scales I scale 1 and I scale 2 . In this

aper, we use 0.75, 0.5 for the two scales. Then I , I scale 1 , and I scale 2 

re fed to the Basic CNN network separately. This produces three

utputs of three different sizes: O , O scale 1 , and O scale 2 . After that,

 scale 1 and O scale 2 are resized back to input frame I size. Note that

ince we use a stride of 1 at the pooling and convolution layers (cf.

able 1 ), O has de facto the same size than I . The final foreground

robability map O final is obtained with an average pooling across

he upscaled maps (cf. the rightmost picture in Fig. 4 ). All three

NN share the same weights. 

.2.3. Cascaded CNN model 

Since both the basic CNN and the multi-scale CNN process each

ixel independently based on the information contained in their

ocal patch, they often produce isolated false positives and false

egatives. Many image segmentation papers [14,17,36] use a con-

itional random field (CRF) with fixed weights as a way to enforce

patial coherence. However, while this CRF can be easily imple-

ented with graph-cut, it produces in our case sub-optimal re-

ults, probably because of the fixed weights for all classes. 

In order to model the dependencies among adjacent pixels and

hus enforce spatial coherence, we implemented a cascaded CNN

odel. As shown in Fig. 6 , the first CNN model (CNN-1) is used to

ompute a foreground probability map which is then concatenated

ith the original frame and fed to a second CNN model (CNN-

). The input of CNN-2 is thus an image with four channels: red,

reen, blue, and a foreground likelihood probability. CNN-2 com-

utes a refined probability map for the input frame (cf. Fig. 2 (e)).
thod for segmenting moving objects, Pattern Recognition Letters 
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Table 1 

Architecture of our basic CNN model. 

Layer 1 2 3 4 5 6 

Stage conv conv conv conv FC FC 

Input size 31 × 31 25 × 25 19 × 19 13 × 13 7 × 7 1 × 1 

Filter size 7 × 7 7 × 7 7 × 7 7 × 7 – –

Conv stride 1 × 1 1 × 1 1 × 1 1 × 1 – –

Pooling method max max – – – –

Pooling size 2 × 2 2 × 2 – – – –

Pooling stride 1 × 1 1 × 1 – – – –

Padding size [0 ,1,0,1] [0 ,1,0,1] – – – - 

#Channels 32 32 32 32 64 1 

Fig. 2. Frame with large moving object (c) fooling our basic CNN method due to its large uniform area. (d) the multi-scale and (e) cascaded CNN models reduces greatly the 

number of false positives by making the system more scale invariant and improving spatial coherence. 

Fig. 3. The diagram of our basic CNN model which consist of 4 convolutional layers 

and 2 fully connected layer. Also the first 2 convolutional layers come with a 2 × 2 

max pooling layer. 

Upsampling

Upsampling

Average

Downsampling

I

Iscale1

Iscale2

Oscale1

Oscale2

O

Ofianl

Downsampling

CNN
model

CNN
model

CNN
model

Sharing parameters

Fig. 4. The architecture of the proposed multi-scale CNN model. 
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Unlike CRF and Markov random fields (MRF) whose parameters

need to be manually fine-tuned (e.g. kernel bandwidth, weights

between unary and pair-wise terms, etc.), the parameters for our

cascaded CNN model are learned from the data. 

Note that CNN-1 and CNN-2 have the same architecture is

showed in Table 1 . The only difference between CNN-1 and CNN-2

is the number of input channels: 3 (RGB) for CNN-1 and 4 (RGB

+ probability map) for CNN2. For training the cascaded model, we

fixed the parameters of CNN-1 and only updated the parameters

of CNN-2. Note also that we tested our cascaded model with more

than 2 CNNs but that did not improve significantly the results. 

3.2.4. Training details 

All three models have been implemented with the MatConvNet

deep learning toolbox which it a wrapper on top of Caffe [33] .

Since we intend to train the models on a small number of an-

notated frames and that each CNN contains a large number of

weights, we empirically observed that a CNN with well initial-

ized weights always perform significantly better. So, instead of

training from scratch the CNN models on the manually outlined

frames, we pre-train the model on a larger dataset and use its
Please cite this article as: Y. Wang et al., Interactive deep learning me

(2016), http://dx.doi.org/10.1016/j.patrec.2016.09.014 
eights to initialize our model [39] . Pretraining is done only once

ith the Motorway dataset [26] , a dataset with pixel accurate

roundtruth of video surveillance images. After transferring the

eights to our models, we finetune the CNN parameters for each

ideo based on the loss function in Eq. (1) . The Adadelta optimiza-

ion method [40] is used for updating parameters with an initial

earning rate of 0.01. Models are trained along 20 epochs with a

atch size of 5 frames. Besides, although the training can be done

atch-wise, for more efficient approach, we train on the whole im-

ge by forcing to zero the energy gradient of pixels located outside

he previously-selected ROI. Last but not least, to make sure the

egmentation result has the same size than the input frame, we

pply mirror padding on the original frame during testing. 

. Experiment and results 

.1. Dataset 

We tested our method on the CDnet 2014 dataset [35] , the

argest video dataset with pixel accurate groundtruth. CDnet con-

ains 53 videos spanning across 11 categories corresponding to

ifferent challenging situations (camera jitter, background motion,

an-tilt-zoom cameras, night videos, etc.). This makes it a perfect

ataset for evaluating our foreground labeling methods. Frames

rom the CDnet dataset are shown in Fig. 5 . 

.2. Evaluation metrics 

In this paper, we evaluate results with the F-measure and the

ercentage of wrong classifications (PWC). The F-measure com-

ines precision and recall into one metric. Given a number of

rue positives (TP), false positives (FP), and false negatives (FN), F-

easure is defined as: 

-measure = 

2 × Precision × Recall 

Precision + Recall 
= 

2 TP 

2 TP + FP + FN 

. (2)

Although widely used, the F-measure must be interpreted with

ase. By its very nature, it does not consider the number of true

egatives (TN) and thus is sensitive to very small moving objects.

t the limit, missing a one-pixel-size moving objects may lead to a

P of 0 and a F-measure of 0. In order to compensate for this, we
thod for segmenting moving objects, Pattern Recognition Letters 
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Fig. 5. A collection of CDnet color frames with their associated ground truth used in our experiments. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

CNNCNN
model 1model 1

CNNCNN
model 2model 2

Fig. 6. The architecture of the proposed Cascaded model. 
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frames number and different thresholds. 

Table 2 

Basic CNN results for different training frame selection strate- 

gies. 

Strategy Training F- PWC FPED FNED 

frame # measure 

Random 50 0 .68 0 .89 5 .65 4 .73 

100 0 .75 0 .67 3 .57 4 .42 

150 0 .85 0 .49 4 .84 3 .9 

200 0 .87 0 .40 4 .68 3 .71 

Uniform 50 0 .67 0 .95 5 .13 4 .82 

100 0 .76 0 .64 4 .93 4 .35 

150 0 .85 0 .52 5 .38 3 .95 

200 0 .86 0 .41 4 .18 3 .8 

Manual 50 0 .79 0 .90 16 .17 4 .12 

100 0 .85 0 .58 10 .44 3 .76 

150 0 .90 0 .46 12 .11 3 .54 

200 0 .90 0 .45 4 .96 3 .45 

v  

i  

g

 

s  

d  
lso use the PWC metric which incorporates TN: 

WC = 

100 × ( FN + FP ) 

TP + FN + FP + TN 

. (3) 

The goal of our labeling method is thus to maximize the F-

easure while minimizing the PWC. However, we also want to

easure how far from the edges of the nearest foreground object

he wrongly classified pixels are. Wrongly classified pixels located

ext to a foreground object is less of a problem than random noise.

n that perspective, we use the false positive error distance (FPED)

nd the false negative error distance (FNED). whose goal is to mea-

ure how far from the nearest foreground objet a wrongly labeled

ixel is located. The FPED and FNED are calculated as: 

PED = 

1 

| FP | 
∑ 

x ∈ FP 

min 

y ∈ FG 
Dist(x, y ) (4) 

NED = 

1 

| FN | 
∑ 

x ∈ FN 

min 

y ∈ BG 
Dist(x, y ) , (5)

here FG is the set of foreground pixels and BG the set of back-

round pixels. 

.3. Experiments 

.3.1. Different selection strategies 

In this section, we first analyze the influence of the training-

rame selection strategies. For each video, we selected 50, 100,

50 and 200 frames for training our basic CNN model. Note that

hose numbers are relatively small compared to the overall video

ize (CDnet videos contain between 10 0 0 and 80 0 0 frames). Af-

er applying different thresholds on our model’s output foreground

robability map, we get different F-measure values and plot it in

ig. 7 . As can be seen, a threshold between 0.6 and 0.7 give the

est performance in most cases. Furthermore, the manual strat-

gy achieves higher F-measure than random and uniform strat-

gy given the same number of training frames. This is because for
Please cite this article as: Y. Wang et al., Interactive deep learning me

(2016), http://dx.doi.org/10.1016/j.patrec.2016.09.014 
ideos with a low level of activity, the random and uniform train-

ng frame selection strategies get a much smaller number of fore-

round objects to train on. 

Results for every metric are provided in Table 2 . As one can

ee, among the three training-frame selection strategies, the ran-

om and uniform achieve similar performances with a F-measure
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Table 3 

Results for our CNN models. 

Model Training F- PWC FPED FNED 

frames # measure 

CNN 50 0 .79 0 .90 16 .17 4 .12 

100 0 .85 0 .58 10 .44 3 .76 

150 0 .90 0 .46 12 .11 3 .54 

200 0 .90 0 .45 4 .96 3 .45 

50 0 .88 0 .53 8 .88 3 .15 

CNN + Cascade 100 0 .90 0 .47 7 .80 2 .82 

150 0 .92 0 .37 5 .68 2 .55 

200 0 .93 0 .37 5 .68 2 .37 

MSCNN 50 0 .87 0 .51 5 .80 3 .51 

100 0 .88 0 .44 3 .57 2 .56 

150 0 .91 0 .35 4 .27 2 .86 

200 0 .92 0 .31 2 .56 2 .2 

50 0 .88 0 .49 10 .52 2 .05 

MSCNN + Cascade 100 0 .92 0 .35 4 .22 1 .84 

150 0 .94 0 .28 3 .25 1 .65 

200 0 .95 0 .26 2 .41 1 .54 
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1 https://github.com/vlfeat/matconvnet-fcn . 
of at most 0.86 and 0.87. As for the manual selection, it reaches

a F-measure of 0.9. That being said, by considering the PWC, all

three selection strategies are roughly equivalent. One may also no-

tice that the FPED and FNED are relatively large for all three se-

lection strategies (more than 4 pixels on average). This is because

the basic CNN model provides results with fuzzy edges, unfilled

holes and producing some random noise. Also, since the manual

strategy selects frames with large amount of foreground objects,

the model trained on those frames have a tendency of producing

slightly more false positives hence why the FPED is larger for man-

ual and FNED lower. 

4.3.2. Evaluation of the proposed CNN models 

In this section, we evaluate the performances of our CNN mod-

els. Four different models have been trained, namely 1) the basic

CNN model, 2) the cascaded CNN model ( C NN + C ascade ), 3) the

multi-scale CNN model ( MSCNN ), and 4) a multi-scale with cascaded

model ( MSC NN + C ascade ). Training frames have been manually

selected and a fix threshold of 0.7 have been used. 

As can be seen in Table 3 , the multi-scale and cascaded ar-

chitectures significantly improve results. We can also see that the

more training frames one has, the more accurate the end result

gets. The top performing method is the MSCNN + Cascade model

whose PWC, FPED and FNED are 50% lower than for the basic CNN

model. Qualitative inspection of results reveal that the MSCNN is

both accurate on large and small foreground objects, it has very lit-

tle isolated false positive and false negative pixels, and the bound-

aries of the foreground objects are very well defined. 

We also show results for the MSCNN + Cascade model on each

video category in Table 4 . By using only 50 frames for training,

our model gets to segment videos from 4 categories out of 11 with

very high accuracy (F-measure ≥ 0.95). By increasing the num-

ber of training frames to 200, our model achieve outstanding per-

formance for most of the categories; F-measure of 0.96, PWC of

0.06 FPED of 2.3 and FNED of 1.4 for pan-till-zoom (PTZ) videos

and very good numbers of videos shot a night. For more difficult

categories such as Bad weather, Thermal and Turbulence , we get F-

measures above 0.94. Even for some pathological videos (especially

Low framerate and Intermittent object motion in which foreground

objects can be very small), our model achieves a good F-measure

of 0.88. 

4.3.3. Comparison with other methods 

We implemented other deep learning methods but due to

space limitation, we only report results of the most accurate one
Please cite this article as: Y. Wang et al., Interactive deep learning me

(2016), http://dx.doi.org/10.1016/j.patrec.2016.09.014 
hich is the fully convolutional network (FCN) [24] in this let-

er. The FCN model was designed to segment real images into dif-

erent semantic categories and reached state-of-art performances

n several benchmark datasets. The FCN model which we used

s a re-implementation by the vlfeat team 

1 . The only modifica-

ion that we made to that model was the 2 class output ( Back-

round / Foreground ). We trained the FCN the same way we did for

ur method. 

Quantitative results for MSCNN + Cascade and FCN are pre-

ented in Table 5 . From those results, MSCNN + Cascade outper-

orms FCN on every metric on all four training sets. Note that these

esults are average metrics across 11 categories including some

xtreme cases like night videos, camera motion, and low frame

ate videos. Results for our method and FCN are also shown in

ig. 8 . We noticed that FCN often underestimates the foreground

bjects which leads to several FN regions. Besides, because of the

CN upsampling strategy (please refer to [24] for more details on

hat), the foreground moving objects have a blobby shape, espe-

ially when the foreground and the background have similar color

istributions. 

We also present in Table 6 the results obtained with the top 3

utomatic motion detection methods reported on the CDnet web-

ite, namely IUTIS-5 (a method which performs a smart majority

ote of several motion detection methods), PAWCS [30] , and SuB-

ENSE [31] , two non-parametric methods. As one can see, these

esults are far less accurate that those obtained by our method in

ables 2–5 . 

.4. Manual labeling accuracy 

As mentioned at the beginning of the paper, our goal is to

roduce results sufficiently accurate to be used as ground truth.

ne may thus conclude that since our model does not reach a

-measure of 1 and a PWC of 0 in Tables 2–5 it is not accurate

nough to be used as a reference. With the following experiments,

e prove that those worries are baseless since human raters can

ardly obtained a F-measure of more than 0.95 and that a F-

easure of 0.94 is as precise as a 1 pixel erosion (or dilation) of

he CDnet groundtruth. 

Ground truthing is a subjective task as different persons may

ive different labeling results for the same video. To evaluate how

esults vary from one person to another, we selected 77 represen-

ative frames from the CDnet dataset and invited three persons to

abel it. We then compared their results with the CDnet ground

ruth (which has also been obtained by a person). Example is given

n Fig. 9 and quantitative results are in Table 7 . 

Interestingly, none of them got a F-measure above 0.96. On av-

rage, these persons got a F-measure of 0.948, a PWC of 0.87,

nd an error distance of 3.6 pixels. This leads us to believe that

 method with a F-measure above 0.94, a PWC below 0.9 and an

rror distance of less than 3.6 pixels is within the error margin of

 human annotation. As shown previously, it is the case for our

ethod. 

We also noticed that a F-measure variation between 0.93 and

.0 may be caused by a very small number of wrongly classified

ixels. In order to illustrate that claim, we simply dilated the CD-

et ground truth by 1 and 2 pixels and measured the impact that

peration had on the F-measure and the PWC (we did the same

xperiment with the erosion operator). Although a simple erosion

or dilation) of one pixel may not seriously affect the quality of the

roundtruth (moving objects are only 1 pixel thinner or fatter), it

onetheless results into a F-measure of 0.94 and 0.93 (cf. Table 8 ).
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Fig. 8. Results on CDnet videos. The first row shows input frames, the second row shows the ground truth, the third row the FCN results, and the fourth row the results by 

our method. 
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Table 4 

Metrics for MSCNN + Cascade on each CDnet video category. 

Category 50 training frames 200 training frames 

F-measure PWC FPED FNED F-measure PWC FPED FNED 

Baseline 0 .97 0 .19 1 .6 0 .7 0 .99 0 .08 2 .0 0 .4 

Dyn. back. 0 .95 0 .08 1 .9 2 .0 0 .98 0 .03 1 .7 1 .7 

Camera jitter 0 .97 0 .27 1 .2 0 .9 0 .98 0 .15 0 .6 0 .9 

Inter. obj. motion 0 .87 1 .24 0 .8 0 .7 0 .88 1 .30 0 .6 0 .5 

Shadow 0 .95 0 .42 5 .2 2 .7 0 .98 0 .18 2 .8 2 .1 

Thermal 0 .89 1 .01 15 .4 3 .2 0 .95 0 .44 4 .0 2 .3 

Bad weather 0 .79 0 .90 65 .4 4 .3 0 .97 0 .11 2 .3 3 .1 

Low framerate 0 .74 0 .24 5 .8 1 .6 0 .88 0 .09 6 .9 1 .3 

Night video 0 .87 0 .75 1 .6 2 .8 0 .93 0 .38 1 .1 2 .1 

PTZ 0 .88 0 .17 8 .0 1 .9 0 .96 0 .06 2 .3 1 .4 

Turbulence 0 .84 0 .09 8 .8 1 .69 0 .94 0 .05 2 .1 1 .2 

Fig. 9. Results showing the unavoidable variation between the ground truth and the manual labeling obtained by three independent persons. 

Table 5 

Results for our method and FCN for different training size. 

Training Method F- PWC FPED FNED 

frames measure 

50 FCN 0 .83 0 .72 12 .58 2 .49 

MSCNN + Cascade 0 .88 0 .49 10 .52 2 .05 

100 FCN 0 .85 0 .61 8 .18 2 .30 

MSCNN + Cascade 0 .92 0 .35 4 .22 1 .84 

150 FCN 0 .86 0 .58 6 .72 2 .13 

MSCNN + Cascade 0 .94 0 .28 3 .25 1 .65 

200 FCN 0 .87 0 .56 5 .58 2 .00 

MSCNN + Cascade 0 .95 0 .26 2 .41 1 .54 

Table 6 

Results from the most accurate motion detection meth- 

ods. 

Model F-measure PWC FPED FNED 

IUTIS-5 0 .77 1 .20 219 .83 4 .37 

PAWCS 0 .74 1 .20 243 .12 4 .78 

SuBSENSE 0 .74 1 .68 309 .43 4 .76 

Table 7 

Results from manual labeling. 

F-measure PWC FPED FNED 

Person 1 0 .93 1 .18 3 .7 5 .3 

Person 2 0 .96 0 .72 2 .1 2 .5 

Person 3 0 .96 0 .72 4 .4 3 .5 

Table 8 

Metrics of dilating and eroding the ground 

truth. 

Method # Pixel F-measure PWC 

Dilate 1 0 .94 0 .31 

2 0 .88 0 .73 

Erode 1 0 .93 0 .33 

2 0 .86 0 .63 
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his shows again that a method with F-measure of 0.93 and above

ay be considered almost as good as the ground truth. 

Let us also mention that our method comes without post-

rocessing. After testing a series of post-processing operations

ncluding superpixels aggregation, median filter, open and clos-

ng morphological operations, we concluded that although post-

rocessing may help under certain conditions, it always degrades

ur overall results. This is yet another indication that our method

roduces a very small number of false positives and false nega-

ives. 

.5. Experiments on SBI2015 dataset 

We also tested our method on the Scene Background Initializa-

ion 2015 (SBI2015) dataset [27] which contains 14 videos. Since

his dataset does not contain any pixel-accurate groundtruth of

ackground and foreground objects, we manually labeled each

ideo of the dataset. Since the SBI2015 videos are relatively short

e.g. ”Toscana” contains only 6 frames), we randomly split each

ideo into 20% frames for training and the remaining 80% for test-

ng. Due to space limitation, we only report results of our best

odel (MSCNN + Cascade) in Table 9 and also plot some repre-

entative results in Fig. 10 . 

As can be seen from Table 9 , our method achieves a F-measure

f more than 0.95 for 12 out of the 14 SBI2015 videos. These re-

ults show again that our approach can be as accurate as a hu-

an being. That is especially true on the CAVIAR1 video for which

he F-measure reaches 0.995. That said, we also noticed that our

ethod performs poorly on two videos. It is the case for the

Snellen” video which happens to be very difficult even for a hu-

an as there is no clear boundary between the foreground and

ackground regions. As for the ”Toscana” video, since it contains

nly 6 frames, the system does not have enough training mate-

ial to correctly learn the foreground and background distributions

here only 2 frames were used for training). We shall also mention

hat the main purpose of our approach is to reduce the burden of

nnotating long videos, which is obviously not a problem with the

oscana video. 
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Table 9 

Results on SBI2015 dataset. 

F-measure PWC FPED FNED 

Board 0 .99 0 .30 1 .84 3 .69 

Candela_m1.10 0 .98 0 .12 1 .80 3 .97 

CAVIAR1 0 .995 0 .03 1 .70 1 .69 

CAVIAR2 0 .95 0 .04 2 .03 1 .48 

CaVignal 0 .97 0 .58 1 .33 1 .42 

Foliage 0 .95 6 .31 2 .27 20 .7 

HallAndMonitor 0 .97 0 .16 1 .93 2 .04 

HighwayI 0 .98 0 .30 3 .36 5 .62 

HighwayII 0 .98 0 .10 2 .10 7 .20 

HumanBody2 0 .96 0 .77 2 .57 5 .40 

IBMtest2 0 .95 0 .48 2 .58 4 .53 

PeopleAndFoliage 0 .99 1 .46 2 .20 11 .72 

Snellen 0 .33 45 .84 13 .74 30 .23 

Toscana 0 .51 21 .63 91 .60 8 .98 

Fig. 10. Results on SBI2015 dataset The first row shows input frames, the second 

row shows the ground truth and the third row shows the results obtained by our 

method. 

Fig. 11. Examples of videos for which our method does not perform well. 
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.6. Processing time 

All the experiments were conducted on a GTX970 GPU with a

atlab implementation. For a 1700 frames long video with frame

ize of 320 × 240, it takes roughly 14 min for our MSCNN + Cas-

ade model to train 20 epochs with 200 frames and 2 min to seg-

ent the rest of the video. These 16 min are orders of magnitude

maller than the time required to manually label the remaining

500 frames. 

. Discussion and conclusion 

In this letter, we proposed a highly accurate semi-automatic

ethod for segmenting foreground moving objects pictured in

urveillance videos. With a small amount of user intervention,

ur model can provide ground truth accurate labeling results. Our

odel has shown to be successful in most video categories of the

Dnet dataset, with an average F-measure of 0.95 and PWC of 0.26.

he experiments reveal that: 

• The best performing model involves a Multi-scale CNN with a

cascaded architecture. Its results are systematically better than

any other CNN model we have tested. 
• For a given video, only 50–200 frames need to be manually la-

beled. This corresponds to a huge gain compared with the man-

ual annotation of the entire video (i.e. a factor of up to 40 for

CDnet videos containing 80 0 0 frames). 
• The number of training frames as well as the selection strategy

depends on the complexity of the video. As a rule of thumb,

videos with fix illumination showing a steady flow of well con-

trasted moving objects only require 50 training frames chosen

at random. For more complex videos such as “Night Videos”

which contains low-contrasted object and “PTZ” for which the

camera moves in all directions, a larger number of training

frames ( ≈ 200) is required to reach good results. Also, videos

with sparse activity usually require the manual selection of the

training frames otherwise the system does not get enough fore-

ground objects to train on. 
• Our approach is not void of limitations as we noticed its dif-

ficulty (F-measure below 0.9) at dealing with very small fore-

ground objects (cf. Fig. 11 ). Fortunately, such situations are rel-

atively infrequent. 
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• Groundtruthing is a subjective task and we showed that a la-

beling result with a F-measure ≥ 0.94 and a PWC ≤ 0.8 can be

considered within the error margin of a human. 

Besides the model and results reported in this paper, we have

tested many other CNN models. However, due to space limitation,

we couldn’t report all of it. We shall thus draw a short summary of

these methods whose results have been systematically worse than

our method. 

In order to consider motion, we included a temporal gradient

to the input RGB image and trained our CNN models accordingly.

However, we noticed that temporal gradient is a poor indicator for

low contrasted objects and produces ghosting artifacts in presence

of intermittent motion (objects that stop for a short while and then

leave). We also concatenated a collection of frames in order to pro-

cess 3D video volumes instead of 2D images. The results ended up

being equal or worst, especially for videos with intermittent mo-

tion object. Similar to [8] , we segmented each image into super-

pixels and combined it with the CNN segmentation results with

the hope of improving accuracy close to the borders. But that did

not work out, especially for objects with a poorly contrasted sil-

houette (typical of night videos). Inspired by Hattori et al. [12] ,

we tried to increase the training set by copy-pasting foreground

objects on top of a background image. Unfortunately, we realized

that adding fake foreground objects only helps when their color,

size, shape and orientation is rigorously identical to that of the ac-

tual foreground objects. And finally, as in [20] , we implemented

an hysteresis thresholding procedure but again, it did not improve

performance in any significant manner. 

In the future, we will explore how to accommodate our method

with a weakly-supervised training approach according to which

users may only provide rough strokes on top of foreground and

background regions. We shall also incorporate reinforcement learn-

ing in order for the system to account for users’ corrections as well

as 3D convolutional layers in order to integrate the temporal di-

mension of the video. 
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