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ABSTRACT It is a challenging task to recognize smoke from images due to large variance of smoke color,
texture, and shapes. There are smoke detection methods that have been proposed, but most of them are
based on hand-crafted features. To improve the performance of smoke detection, we propose a novel deep
normalization and convolutional neural network (DNCNN) with 14 layers to implement automatic feature
extraction and classification. In DNCNN, traditional convolutional layers are replaced with normalization
and convolutional layers to accelerate the training process and boost the performance of smoke detection.
To reduce overfitting caused by imbalanced and insufficient training samples, we generate more training
samples from original training data sets by using a variety of data enhancement techniques. Experimental
results show that our method achieved very low false alarm rates below 0.60% with detection rates above
96.37% on our smoke data sets.

INDEX TERMS Deep neural networks, deep learning, smoke detection, image classification.

I. INTRODUCTION
Smoke detection is an important and effective way of avoid-
ing damages caused by fire. Traditional fire detection meth-
ods generally use point based sensors, which are based on
smoke particle sampling, atmosphere temperature sampling,
and relative humidity sampling [1]. Traditional fire sensors
have been widely used because of cheapness, simplicity and
accuracy. However, these sensors have some inherent short-
comings that are difficult to overcome. These sensors need to
directly sample combustion products for analyses of particles,
temperature or humidity. Therefore, these sensors must be
installed near places where fire is ignited. This limits these
sensors to be applied in small or indoor spaces. Moreover,
it may take a long time to transfer combustion products, like
smoke particles, to sensors, so it leads to slow response.

In order to overcome the above mentioned shortcomings of
traditional fire detection methods, image based fire detection
has been widely explored. By analyzing fire cases, we find
that smoke often spreads faster than flame. Hence, smoke
detection provides earlier fire alarms than flame detection.

A lot of algorithms have been proposed for image smoke
detection in the past decades. Toreyin et al. [2] proposed an
algorithm based on features of flicker, motion, edge blurring

and color for smoke detection. Gubbi et al. [3] proposed
a video smoke detection method by handcrafting features,
which consists of geometric mean, standard deviation, skew-
ness, kurtosis, arithmetic mean and entropy over every sub-
band of wavelet transformed images. Yuan [4] proposed
several smoke detection methods, which are a fast accu-
mulative motion orientation model based on integral image,
histograms of Local Binary Pattern (LBP) and Local Binary
Pattern Variance (LBPV) based on pyramids [5], shape-
invariant features on multi-scale partitions with AdaBoost [6]
and high-order local ternary patterns with locality preserving
projection [7].

Most of existing algorithms are based on the framework
of handcrafted features. However, it is very difficult for these
existing algorithms to achieve low false alarm rates without
decreasing detection rates. The main reason is that smoke
color, texture and shapes vary hugely. In addition, smoke
blurs visual scenes, thus leading to unstable features. It is a
complicated and expensive task to handcraft discriminative
features for smoke detection.

In recent years, deep convolutional neural
networks (CNNs) have demonstrated excellent performance
on generic visual recognition tasks [8], and object detection
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and image classification [9], [10]. However, little researches
on deep convolutional neural networks (CNNs) for smoke
detection have been reported.

In this paper, we propose a deep normalization and con-
volutional neural network (DNCNN) for smoke detection.
Unlike traditional handcrafted methods, DNCNN completes
both feature extraction and smoke recognition at the same
time, so it is an end-to-end method for early fire alarms.
In DNCNN, we specially construct a deep neural network
to learn features directly from raw pixels of smoke and non-
smoke images, so none of handcrafted features are involved.

This paper is distinguished by the following main contri-
butions:
• An end-to-end network is proposed for smoke detection.
Our method has better performance and less learnable
parameters than several classical Deep CNNs, such as
AlexNet [8], ZF-Net [11], and VGG16 [12].

• We replace traditional convolutional layers with nor-
malization and convolutional layers to accelerate the
convergence speed of training and improve performance
at the same time.

• Insufficient training samples and imbalance of negative
and positives samples would lead to overfitting. To solve
this issue, a variety of data enhancement techniques are
used to generate a large and balanced training set, which
helps our network to further improve performance.

The rest of this paper is organized as follows. Section II
reviews deep convolutional neural networks. In Section III,
our DNCNN is presented in detail. Experiments and results
are demonstrated in Section IV. Finally, conclusions are given
in Section V.

II. RELATED WORK
A. DEEP CONVOLUTIONAL NEURAL NETWORKS
Hubel and Wiesel [13] revealed the similar structure between
the hierarchical model of human visual system and Con-
volutional Neural Networks (CNNs). Fukushima et al. [14]
proposed the concept of ‘‘neocognitron’’, which is a funda-
mental work of CNNs. Afterward, LeCun et al. [15] reached a
milestone of CNNs by proposing LeNet-5 that is a pioneering
convolutional neural network. LeNet-5 was applied to rec-
ognize hand-written numbers and achieved excellent perfor-
mance. CNNs are able to deal with high resolution images
when more convolutional layers are applied. However, more
convolutional layers also require more computational con-
sumption. Therefore, we need to make tradeoffs between the
number of convolutional layers and computational efficiency.

With the advent of large-scale datasets and the develop-
ment of computational resources, the architectures of CNNs
have been become very deeper. Deep CNNs have achieved
great success in computer vision tasks. Alex et al. [8]
proposed AlexNet, which achieved excellent performance
in ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2012. So far, algorithms based on deep
CNNs [12], [16], [17] have taken the dominant place in
pattern recognition.

B. BATCH NORMALIZATION
Mini-batch stochastic gradient descent (SGD) has been
widely used in the training of deep CNNs. The training effi-
ciency of deep CNNs is severely reduced by internal covariate
shift [18], which is the changes of internal input distributions
during training. Batch normalization [18] is proposed to alle-
viate internal covariance shift by transforming internal inputs
with a scale and shift step before nonlinear activation. Mean
and variance of each activation are calculated to normalize
features by equations (1) and (2).

x̄f =
1
m

m∑
i=1

xi,f (1)

σ 2
f =

1
m

m∑
i=1

(xi,f − x̄f )2 (2)

where m is the size of a mini-batch, and xi,f is the f th
feature of the ith sample in the mini-batch.

Using mini-batch mean and variance, we can normalize
each feature as follows:

x̂f =
xf − x̄f√
σ 2
k + ξ

(3)

where ξ is a small positive constant to improve numerical
stability.

However, the normalization of input features reduces the
representation capability of the inputs. To solve this problem,
batch normalization introduces two learnable parameters γf
and βf for each feature f . Batch normalization is defined by
transforming normalized features with a scale and shift step:

BN (xf ) = γf x̂f + β f (4)

The network can recover the distribution of the original
inputs by the scale and shift step. Batch normalization has
been widely used for CNN-based image classification.

III. APPROACH
A. NETWORK ARCHITECTURE
The network architecture plays a key role in determining
the performance of CNN. We construct a novel network by
sharing some basic architectures proposed in the classical
ZF-Net [11] for smoke detection. Then we modify our net-
work inspired by the idea proposed in [12]. Also, we replace
convolutional layers with normalization and convolutional
layers. Finally, we propose a deep normalization and con-
volutional neural network, which is abbreviated to DNCNN.
Our DNCNN has fourteen layers, as illustrated in Fig. 1.
In DNCNN, the first eight layers are normalization and
convolutional layers alternated with three pooling layers for
feature extraction, and the remaining three layers are fully
connected layers for classification.

1) NORMALIZATION AND CONVOLUTIONAL LAYERS
In the lth layer, the parameter N l represents the number
of feature maps, so each feature map can be expressed as
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FIGURE 1. The architecture of the deep normalization and convolutional neural network classification system for smoke detection. Each cuboid, which is
drawn in dotted lines, denotes a stack of feature maps. Fi stands for a stack of feature maps in the i th layer. Red numbers along depth directions denote
the number of feature maps. The shapes of all feature maps are square. Green numbers under cuboids denote the widths and heights of feature maps.
The i th normalization and convolutional layer is abbreviated to NCi , and similarly the i th max-pooling layer to Pi . For example, NC8:384@3×3×64 means
that this is the 8th normalization and convolutional layer with 384 filters of size 3×3×64, P4: 3×3 means this is the 4th max-pooling layer with the kernel
size of 3×3, and FL11:2048 means that this is the 11th fully-connected layer with 2048 neurons.

Flj(j = 1, 2, . . . ,N l). Generally, convolutional layers
are regarded as feature abstract layers. The jth feature
map Flj in the lth layer associates all the feature maps
Fl−1i (i = 1, 2, . . . ,N l−1) in the (l-1)th layer by filters Wl

ij
and bias bj. Every filter with a bias serves as a feature
extractor to extract features by convolving itself with the input
feature maps. To obtain Flj , each input feature map Fl−1i (i =
1, 2, . . . ,N l−1) is convolved with the corresponding filter
Wl

ij, and the results are summed up and finally added with
the bias bj. Finally, a nonlinear activation function ε(·) is used
to model the nonlinearity for the neural network. Mathemat-
ically, the feature maps of the lth layer can be computed as
follows:

Flj = ε

N l−1∑
i=1

Fl−1i ∗Wl
ij + b

l
j

 , j = 1, 2, . . . ,N l (5)

where ∗ denotes the convolution operation.
Once the two parameters γf and βf are learned, we use

equations (1), (2), (3), and (4) to perform batch normalization
for each feature f .

2) POOLING LAYERS
Normalization and convolutional layers are used to extract
features. But the dimensions of the extracted features are too
high for classification layers due to limited video memory.
In addition, high dimensional features increase the risk of
over-fitting and computational time.

To address this problem, a pooling layer, which gen-
erally connects to a convolutional layer, has been used
to reduce the resolution of convolutional feature maps.
Max-pooling or average-pooling are often used in deep learn-
ing. The former selects the maximum activation value over
a pooling region, while the latter uses the average activa-
tion value. Overlapping-pooling has been proposed in [8].
The overlapping-pooling method allows pooling regions to
be overlapped, so more information can be extracted from
feature maps. The maxing-pooling and overlapping-pooling
techniques are applied in our network.

3) CLASSIFICATION LAYERS
Classification layers generally contain one or more fully-
connected layers at the end of deep neural networks.
Similarly, our network contains three fully-connected layers
at the end of the neural network. In most of deep neural
networks, fully-connected layers often account for most of
learnable parameters. However, fully-connected layers are
prone to be overfitting. To overcome this issue, we used the
dropout technique [19] to reduce overfitting in the first two
fully-connected layers. As shown in Fig. 1, the first fully-
connected layer FL12 takes all feature maps of F11 as the
input neurons. The last fully-connected layer is the final
output layer, which takes the output of FL13 as input and is
parameterized by a weight matrixW14 and a bias vector b14.

F14
=W14F13

+ b14 (6)

The output layer contains two neurons, which output the
probabilities of two classes, i.e.,

_y =
[_y1,_y2]T . The proba-

bility for the jth class is computed by the softmax function,
defined as follows:

_yj =
exp (F14

j )∑2
i=1 exp(F

14
i )
, j = 1, 2 (7)

where _yj is the output probability of the jth neuron.

B. IMAGE NORMALIZATION
In order to obtain discriminative internal features that can lead
to excellent performance, we adopt an image preprocessing
method to reduce variance of images and enhance inherent
characteristics of images.

Smoke images are captured under varying illumination.
So we adopt the min-max normalization method [20] to
remove influence of illumination. The normalization is com-
puted pixel by pixel and is defined as follow:

xn =
xr − xmin

xmax − xmin
(8)

where xr denotes the intensity value of a pixel, xn is the nor-
malized intensity value, xmax and xmin denotes the minimum
and maximum intensity values of an image, respectively.
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C. DATA AUGMENTATION
Deep CNNs often contain millions of parameters to be
learned. High recognition accuracy cannot be achieved unless
a large number of training images are provided. Another
problem is the imbalanced distribution of training images.
The number of smoke images is far less than that of non-
smoke images in our training dataset. It is labor-intensive and
exhausting to generate plenty of training images by captur-
ing or collecting smoke pictures. Instead, we produce more
training data from the training set by using data augmentation
techniques [8].

FIGURE 2. An example of data augmentation. a) Original images in the
training set; b) Corresponding new images generated by horizontal flip;
c) Corresponding images by vertical flip; d) Corresponding images rotated
by 90 degrees.

There are a variety of image processing methods for data
augmentation, including horizontal flip, vertical flip, rotation,
and so on. Fig. 2 shows some new images generated from
original images through data augmentation techniques.

In this paper, we tried two strategies of data augmentation
and compared the two strategies with each other. The first one
is that we use all images of the training set to do data augmen-
tation. In other words, we increased the number of the training
samples without changing the proportion of smoke samples
to non-smoke ones. We mixed newly-generated samples and
original samples to obtain a new, larger but imbalanced train-
ing set. The second one is that we only used smoke images
to generate new positive samples, so a relatively small but
balanced training set was created.

Our DNCNN does not achieve good performance on the
training set generated by the first strategy. However, the per-
formance of DNCNN is significantly improved when the sec-
ond strategy is applied. Detailed experimental results are
presented in Section IV-C.

D. NETWORK DESIGN
There are many factors affecting performance in the design
of deep neural networks. Generally, the design process of

a network is to specify a set of hyper-parameters for the
network.

Specifically, we need to determine all the values of model-
relevant hyper-parameters [21], which are the number and
size of filter kernels for convolutional layers, the size of
pooling regions for pooling layers, the values of strides, the
number of neurons for fully-connected layers, the probabili-
ties for dropout, and activation functions.

We use a trial-and-error method to obtain optimized the
hyper-parameters for our network. In particular, we concern
about the activation functions in hidden layers. There are
three commonly used activation functions, which are sigmoid
function ε (x) = σ (x) [22], hyperbolic tangent function
ε (x) = tanh(x), and Rectifier Linear Unit (ReLU) function
ε (x) = max(x,0) [8]. The performance provided by the three
activation functions has been evaluated. Detailed experimen-
tal results are presented in Section IV-B.

E. NETWORK TRAINING
In order to capture discriminative features for smoke detec-
tion, we construct DNCNN, which contains about 20 mil-
lion learnable parameters. It is necessary to appropriately set
training parameters for our network in order to achieve fast
convergence.

The loss function of our network is defined as the cross-
entropy between the output probability vector

_y =
[_y1,_y2]T

and the class label vector y = [y1, y2]T . One-hot encoding
is adopted to specify label vectors for all samples. The cross-
entropy is defined as follows:

C(y,_y) = −
2∑
j=1

yj log(
_yj) (9)

IV. EXPERIMENTS AND RESULTS
Weused Tensorflow [24] andKeras [25] to construct and train
the proposed DNCNN. To facilitate comparisons, we also
implemented other deep CNNs using Tensorflow and Keras.
All experiments were carried out in the Ubuntu 16.04 oper-
ation system running on a PC with Inter(R) Xeon(R) E3-
1230 v3 CPU 3.30GHz and an Nvidia GTX1060 GPU.
It takes about 45 seconds to train DNCNNone epoch onGPU.

TABLE 1. image data sets for training, validation and testing.

Table 1 shows four data sets named as Set1, Set2, Set3 and
Set4. Set1 has 1383 images including 552 smoke images
and 831 non-smoke images. Set2 has 1505 images that are
688 smoke images and 817 non-smoke images, respectively.
Set3 contains 10712 images including 2201 smoke images
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FIGURE 3. Images from the four data sets. a) Smoke images and b) non-smoke images from Set 1. c) Smoke images and
d) non-smoke images from Set 2. e) Smoke images and f) non-smoke images from Set 3. g) Smoke images and h) non-smoke
images from Set 4.

and 8511 non-smoke images. In Set4, there are 10617 images
consisting of 2254 smoke images and 8363 non-smoke
images.We adopt the relatively large dataset Set3 for training,
Set4 for validation, and other two datasets (Set1 and Set2) for
testing.

As shown in Fig. 3, both intro-class and inter-class vari-
ances of smoke and non-smoke are very large. That is the
main reason why it is very challenging to detect smoke from
images.

A. EVALUATION METHODS
To quantitatively compare our method with existing algo-
rithms, we used evaluation methods [7] that are Detection
Rate (DR), False AlarmRate (FAR) and Accuracy Rate (AR),
defined as follows:

DR =
Pp
Qp
× 100% (10)

FAR =
Np
Qn
× 100% (11)

AR =
PP + Nn
Qn + Qp

× 100% (12)

where Qp and Qn are the numbers of positive and negative
samples respectively, Pp is the number of correctly detected
true positive samples, and Np denotes the number of negative
samples falsely classified as positive samples.

Actually, DR is the True Positive Rate (TPR) and FAR is
False Positive Rate (FPR). Our goal is to achieve high AR,
high DR, and low FAR at the same time.

B. OPTIMIZATION OF NETWORK HYPER-PARAMETERS
We initialized the weights by the glorot-uniform
distribution [23]. All of learnable parameters were updated
periodically using SGD [15]. The momentum trick [21] was

TABLE 2. Training-relevant hyper-parameters.

employed to skip local minimums and speed up training,
since it can smooth the directions of gradient descent and
make the network converge fast. Also, learning rate decay
was adopted to decrease learning rates after each training
epoch. The detailed training-relevant hyper-parameters are
listed in Table 2, and these hyper-parameters are mainly
referenced from [9]. The training process terminates after
correct classification rates of both training and validation sets
plateaus at some epochs.

We conducted experiments to demonstrate the importance
of hyper-parameters for network design. We used the orig-
inal training set without data augmentation for training and
testing. The final optimized hyper-parameters are summa-
rized in Table 3. To see the influence of hyper-parameters,
we changed only one or two parameters of the final hyper-
parameters at each time and performed experiments with the
changed hyper-parameters. Table 4 gives evaluation results
on the test sets. Variants of network hyper-parameters are
assigned empirically and evaluated on a large number of
experiments.

As we can see from Table 4, the hyper-parameters of our
network significantly influence the performance of our net-
work.We carefully tuned all the hyper-parameters until excel-
lent performance was obtained. For our DBCNN, with the
hyper-parameters described in Table 2 and Table 3, we can
achieve AR of 97.83%, DR of 95.28% and FAR of 0.48%
on Set1, and AR of 98.08%, DR of 96.36%, FAR of 0.48%
on Set2. In summary, overlapped max-pooling achieves
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TABLE 3. Model-relevant hyper-parameters.

better performance than non-overlapped max-pooling in bot-
tom layers. Besides, appropriately reducing the number of
neurons in fully-connected layers not only shortens the con-
vergence time but also improves the recognition ability for
smoke detection.

C. EXPERIMENTS WITH DATA AUGMENTATION
To get more training samples and explore a right strategy for
combination of new and original training samples, we used
three image processing methods, which are horizontal flip,

TABLE 4. Evaluation of performance with different hyper-parameters.

TABLE 5. Original and augmented datasets.

TABLE 6. Experiments with data augmentation.

vertical flip and central rotation, to generate three new images
from each original image. Then we put new and original
images together to create two new training datasets in two
different ways.

We combined original images with the newly generated
ones in two different ways. Thus we constructed two new
training sets named SetB and SetL. SetB consists of original
images and part of newly generated smoke images that are
almost balanced, while SetL contains original images and all
of newly generated smoke images. Therefore, SetL is still
imbalanced since the original Set3 is imbalanced. Details
about the two augmented datasets are presented in Table 5.
We used these three different datasets, i.e., Set3, SetB and
SetL, to train our DNCNNwith the training hyper-parameters
described in Table 3. The testing results are listed in Table 6.
Data augmentation techniques can improve performance.

Our DNCNN learned on SetB achieved better performance
than that on Set3. When we learned DNCNN on SetB instead
of Set3, AR increases from 97.83% to 98.19% on Set1 and
from 98.08% to 98.53% on Set2, DR increases from 95.28%
to 96.37% on Set1 and from 96.36% to 97.52% on Set2,
and FARs increase only about 0.1% on Set1 and Set2. The
experimental results indicate that overfitting can be reduced
when a larger and balanced training set is provided, and
the balance of training sets is also an important factor for
improving effectiveness of data augmentation.

D. COMPARISON EXPERIMENTS
1) COMPARISONS WITH CLASSICAL DEEP CNNs
We compared our DNCNNwith several classical deep CNNs,
which have achieved excellent performance on generic visual
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TABLE 7. Comparisons with classical deep CNNs.

recognition tasks. The classical deep CNNs for comparisons
include AlexNet [8], ZF-Net [11], and VGG16 [12]. We basi-
cally used the training-relevant hyper-parameters described in
Table 2 but the size of mini-batch was set to 32. We adjusted
the size of input images in order to adapt to different network
architectures. For the sake of fair comparisons, the training
set without data augmentation was used for all the compared
algorithms. To gain insight into our network, our DNCNN
without using batch normalization (BN) was also tested to
evaluate effects of BN layers. In addition, all the networks
are trained from scratch.

The experimental results are presented in Table 7.
On Set1 and Set2, our network achieved the highest ARs
among the four networks, and obtained higher DRs than other
methods except for VGG16 on Set1. Although our method
obtained lower DR than VGG16 on Set1, FAR of our network
was reversely lower than VGG16. AlexNet achieved slightly
lower FARs than our network on Set1 and Set2, but ARs and
DRs of our network were obviously higher than AlexNet.
ZF-Net obtained lower FARs on Set1 and Set2, and other
testing results were worse than our network. Our network
obviously became worse when batch normalization layers
were removed. Hence, batch normalization layers play an
important role in our network.

In summary, Our DNCNN has better performance than
AlexNet, ZF-Net, and VGG16 for smoke detection, and batch
normalization really helps improve the generalization ability
of our network. In addition, we also find that our DNCNN
has less learnable parameters than other three deep CNNs,
as shown in Table 7.

The training processes of different networks are illustrated
in Fig. 4. As shown in Fig. 4, compared to the other three
deep CNNs, our DNCNN consumes extremely few iterations
to converge. The training accuracy of our DNCNN reaches
100% after about 35 epochs, and then it becomes stable. Our
network has similar training performance when it does not
use BN. Meanwhile, the training accuracies of other three
deep CNNs are not higher than 95%, and they become stable
after about 200 epochs. We also observe the same situation in
the validation accuracy curves. This means that our DNCNN
consumes less computing resources and has fast convergence
to capture recognition ability for smoke detection.

From Fig. 4, we can easily see that there is a gap between
validation accuracy lines of original DNCNN and DNCNN

FIGURE 4. Training and validation accuracy curves of DNCNN, DNCNN
(without BN), AlexNet, ZF-Net and VGG16. a) The training accuracy curves.
b) The validation accuracy curves.

without BN. The reason is that DNCNN without BN brings
the problem of overfitting, while the original DNCNN avoids
this problem. Since BN is one of the components in our
method, we only involve the original DNCNN in the coming
comparison experiments.

2) COMPARISONS WITH TRADITIONAL ALGORITHMS
To demonstrate the advantages of deep learning based smoke
detection method, we compared the proposed DNCNN with
traditional smoke detection methods consisting of hand-
crafted feature extraction and classification. Smoke can be
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FIGURE 5. Visualization of feature maps in convolutional and pooling layers learned by our DNCNN on SetB.

TABLE 8. Comparisons with traditional algorithms.

regarded as a specific kind of texture, and it has been proved
that texture feature is discriminative in representing smoke.
Support Vector Machine (SVM) is one of the most widely
used classifiers. So two texture descriptor based methods,
HLTPMC [7] and MCLBP [26], are involved in our compar-
ison experiments.

Traditional algorithms often do not use data augmenta-
tion. However, data augmentation is usually a part of deep
learning-based algorithms, so our DNCNN also uses data
augmentation to generate the balanced training set SetB for
training. The testing results on Set1 and Set2 are presented in
Table 8.

Our algorithm achieved slightly lower DRs but higher ARs
than HLTPMC. However, our method obtained far lower
FARs than HLTPMC. It is very important for smoke detection
methods to achieve very low FARs with acceptable DRs. Our
method obviously outperformed MCLBP with respect to
DRs, FARs and ARs.

Compared to traditional algorithms based on handcrafted
features, our deep learning-based algorithm apparently
achieves high detection rates and low false alarm rates.

E. VISUALIZATION AND ABLATION
1) VISUALIZATION OF DNCNN FEATURES
To gain insight into the behavior of deep CNNs, visualization
is a common practice. In order to understand features gener-
ated in DNCNN, we visualized the feature maps learned by
our network.

Fig. 5 shows the visualization results of feature maps gen-
erated from a smoke image. As we can see, feature maps in

TABLE 9. Evaluation of different classification layers.

layer NC1 have textures that are similar to the smoke image,
so the filters in the first layer behave like texture detectors.
We also observe similar results in the second and third layers.
However, we find the feature maps in the two layers have
more and more pixels that have zero values. The reason is
that the ReLU activation function has the property of sparsity.
As the size of the feature maps decreases in higher layers,
features become more and more abstract, and they cannot be
defined exactly and explained explicitly.

2) ABLATION ANALYSIS OF OUR NETWORK
As shown in Fig. 1, there are three fully connected layers
in our network. The last fully connected layer is used for
classification, while the other two are used to extract feature
vectors from feature maps obtained by preceding layers.

To study effectiveness of different components of our net-
work, we analyzed the results on the original smoke datasets
for each of the three fully connected layers.

The experimental results are presented in Table 9. The
DNCNN with three fully connected layers achieves the
best performance, but the network performance gets slightly
worse when one of the first two fully connected layers is
removed. Even worse, the network does not converge when
only the last fully connected layer is retained. The reason is
that without the first two fully connected layers, the dimen-
sion of features that are fed to the softmax classifier is so
high that back propagation is dismissed. Therefore, although
convolutional layers provide representational power, fully
connected layers are also indispensable for our network.
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V. CONCLUSION
To improve performance, we propose a deep normaliza-
tion and convolutional neural network (DNCNN) for smoke
detection. Our network uses batch normalization to speed
up the training process and boost accuracy of smoke
detection. Unlike algorithms based on handcrafted fea-
tures, our DNCNN can automatically extract features for
smoke detection. Experimental results show that our DNCNN
achieves high detection rates and low false alarm rates at
the same time. Moreover, we also validate the importance
and effectiveness of data augmentation for our DNCNN,
especially when the training samples are insufficient and
imbalanced.

Our future work will focus on recent breakthroughs of
deep learning to improve deep learning based smoke detec-
tion methods. For example, GANs [27] have achieved great
success in image generation, so we will investigate data
augmentation by GANs for smoke detection. Also, we will
explore better network architectures to extract features for
smoke detection.
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