Stacked Hourglass Networks for Human Pose Estimation

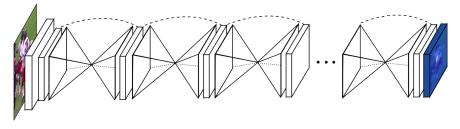
Alejandro Newell, Kaiyu Yang, and Jia Deng University of Michigan, Ann Arbor ECCV 2016

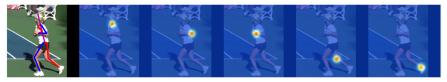
Presenter: Van-Thanh Hoang

thanhhv@islab.ulsan.ac.kr December, 16, 2017

Overview

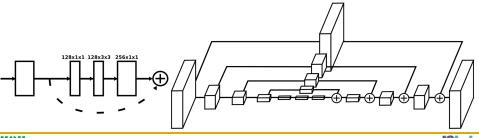
- Problem:
 - Detect position of human body joints in an image
- Proposed a novel architecture called Stacked Hourglass





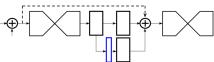
Hourglass Design

- Motivations: need to capture information at every scale
- Set up HG modules
 - Convolutional and max pooling layers are used to process features down to a very low resolution
 - After reaching the lowest resolution, the network begins the sequence of upsampling and combination of features across scales
 - ► No Conv layers have filter greater than 3 × 3

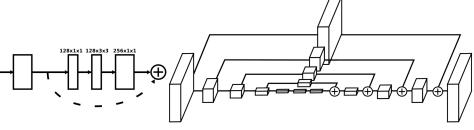


Stacked Hourglass with Intermediate Supervision

- Stacking multiple hourglasses
- Feeding the output of one as input into the next



Loss is applied to the predictions of all hourglasses using the same ground truth.



Configurations (1/4)

- Running Information
 - NVIDIA TitanX GPU with 12 GB
 - Network has 8 HG modules
 - Input images are resized to 256 × 256 pixels
 - Do data augmentation with
 - ► Rotation (+/ 30 degrees)
 - ► Scaling (.75 1.25)
 - Using Torch7 framework
 - Training takes 3 days
 - A single forward pass takes 75 ms
 - Result of an image is the average of the heatmaps of origin input and the flipped version (1% improvement)

Configurations (2/4)

- Datasets
 - Frames Labeled In Cinema (FLIC) (https://bensapp.github.io/flic-dataset.html)
 - ► 5003 images (3987 training, 1016 testing)
 - Taken from films.

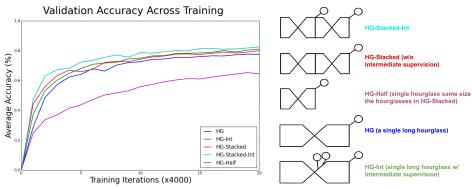
- MPII Human Pose
 - 25k images
 - 40k annotated samples (28k training, 11k testing)

Configurations (3/4)

MPII Human Pose examples

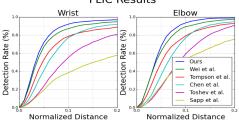
- ► Using Percentage of Correct Keypoints (PCK) metric
- A candidate keypoint to be correct if it falls within α ⋅ max(h, w) pixels of the groundtruth keypoint, where h and w are the height and width of the bounding box of human (usually use torse)
- PCKh: using head size instead of bounding box size

Comparison of training with different types of HG network



Evaluation (2/4)

Experiments on FLIC (PCK@0.2)

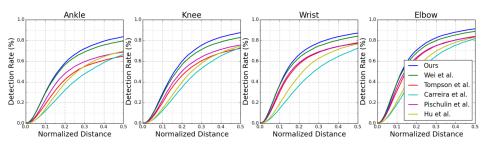


	F	Elbow	Wrist
Sapp et al. [1]		76.5	59.1
Toshev et al. [24]		92.3	82.0
Tompson et al. [16]		93.1	89.0
Chen et al. $[25]$		95.3	92.4
Wei et al. $[18]$		97.6	95.0
Our model		99.0	97.0

FLIC Results

Evaluation (3/4)

Experiments on MPII (PCKh@0.5)



	Head	Shoulder	Elbow	Wrist	Hip	Knee	Ankle	Total
Tompson et al. [16], CVPR'15			83.9	77.8	80.9	72.3	64.8	82.0
Carreira et al. [19], CVPR'16	95.7	91.7	81.7	72.4	82.8	73.2	66.4	81.3
Pishchulin et al. [17], CVPR'16	94.1	90.2	83.4	77.3	82.6	75.7	68.6	82.4
	95.0	91.6	83.0	76.6	81.9	74.5	69.5	82.4
Wei et al. [18], CVPR'16	97.8	95.0	88.7	84.0	88.4	82.8	79.4	88.5
Our model	98.2	96.3	91.2	87.1	90.1	87.4	83.6	90.9

- Failure in case of multiple people
- Can be fail if there is a slight translation and/or change of scale of the input image
- ► Reasons:
 - Network is trained for estimate pose of single person
 - Person is in the center of training images

Conclusion

- Proposed a new convolutional network architecture called Stacked Hourglass Network for human pose estimation task
 - Achieve state-of-the-art results
 - Can capture information in many scales
- Comments
 - Weakness:
 - Detect single person
 - Result depends on how good of people detector
 - Good idea for capture information in every scales

Thank you for your attention!

