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ABSTRACT

Neural networks have enabled state-of-the-art approaches to achieve incredible results on computer
vision tasks such as object detection. However, such success greatly relies on costly computation
resources, which hinders people with cheap devices from appreciating the advanced technology. In
this paper, we propose Cross Stage Partial Network (CSPNet) to mitigate the problem that previous
works require heavy inference computations from the network architecture perspective. We attribute
the problem to the duplicate gradient information within network optimization. The proposed
networks respect the variability of the gradients by integrating feature maps from the beginning and
the end of a network stage, which, in our experiments, reduces computations by 20% with equivalent
or even superior accuracy on the ImageNet dataset, and significantly outperforms state-of-the-art
approaches in terms of AP50 on the MS COCO object detection dataset. The CSPNet is easy to
implement and general enough to cope with architectures based on ResNet, ResNeXt, and DenseNet.
Source code is at https://github.com/WongKinYiu/CrossStagePartialNetworks.

1 Introduction

Neural networks have been shown to be especially powerful when it gets deeper [7, 39, 11] and wider [40]. However,
extending the architecture of neural networks usually brings up a lot more computations, which makes computationally
heavy tasks such as object detection unaffordable for most people. Light-weight computing has gradually received
stronger attention since real-world applications usually require short inference time on small devices, which poses a
serious challenge for computer vision algorithms. Although some approaches were designed exclusively for mobile
CPU [9, 31, 8, 33, 43, 24], the depth-wise separable convolution techniques they adopted are not compatible with
industrial IC design such as Application-Specific Integrated Circuit (ASIC) for edge-computing systems. In this work,
we investigate the computational burden in state-of-the-art approaches such as ResNet, ResNeXt, and DenseNet. We
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Figure 1: Proposed CSPNet can be applied on ResNet [7], ResNeXt [39], DenseNet [11], etc. It not only reduce
computation cost and memory usage of these networks, but also benefit on inference speed and accuracy.

further develop computationally efficient components that enable the mentioned networks to be deployed on both CPUs
and mobile GPUs without sacrificing the performance.

In this study, we introduce Cross Stage Partial Network (CSPNet). The main purpose of designing CSPNet is to
enable this architecture to achieve a richer gradient combination while reducing the amount of computation. This aim
is achieved by partitioning feature map of the base layer into two parts and then merging them through a proposed
cross-stage hierarchy. Our main concept is to make the gradient flow propagate through different network paths
by splitting the gradient flow. In this way, we have confirmed that the propagated gradient information can have a
large correlation difference by switching concatenation and transition steps. In addition, CSPNet can greatly reduce
the amount of computation, and improve inference speed as well as accuracy, as illustrated in Fig 1. The proposed
CSPNet-based object detector deals with the following three problems:

1) Strengthening learning ability of a CNN The accuracy of existing CNN is greatly degraded after lightweightening,
so we hope to strengthen CNN’s learning ability, so that it can maintain sufficient accuracy while being lightweightening.
The proposed CSPNet can be easily applied to ResNet, ResNeXt, and DenseNet. After applying CSPNet on the
above mentioned networks, the computation effort can be reduced from 10% to 20%, but it outperforms ResNet [7],
ResNeXt [39], DenseNet [11], HarDNet [1], Elastic [36], and Res2Net [5], in terms of accuracy, in conducting image
classification task on ImageNet [2].

2



CSPNet: A New Backbone that can Enhance Learning Capability of CNN A PREPRINT

Figure 2: Illustrations of (a) DenseNet and (b) our proposed Cross Stage Partial DenseNet (CSPDenseNet). CSPNet
separates feature map of the base layer into two part, one part will go through a dense block and a transition layer; the
other one part is then combined with transmitted feature map to the next stage.

2) Removing computational bottlenecks Too high a computational bottleneck will result in more cycles to complete
the inference process, or some arithmetic units will often idle. Therefore, we hope we can evenly distribute the amount
of computation at each layer in CNN so that we can effectively upgrade the utilization rate of each computation unit
and thus reduce unnecessary energy consumption. It is noted that the proposed CSPNet makes the computational
bottlenecks of PeleeNet [37] cut into half. Moreover, in the MS COCO [18] dataset-based object detection experiments,
our proposed model can effectively reduce 80% computational bottleneck when test on YOLOv3-based models.

3) Reducing memory costs The wafer fabrication cost of Dynamic Random-Access Memory (DRAM) is very expensive,
and it also takes up a lot of space. If one can effectively reduce the memory cost, he/she will greatly reduce the cost
of ASIC. In addition, a small area wafer can be used in a variety of edge computing devices. In reducing the use of
memory usage, we adopt cross-channel pooling [6] to compress the feature maps during the feature pyramid generating
process. In this way, the proposed CSPNet with the proposed object detector can cut down 75% memory usage on
PeleeNet when generating feature pyramids.

Since CSPNet is able to promote the learning capability of a CNN, we thus use smaller models to achieve better
accuracy. Our proposed model can achieve 50% COCO AP50 at 109 fps on GTX 1080ti. Since CSPNet can effectively
cut down a significant amount of memory traffic, our proposed method can achieve 40% COCO AP50 at 52 fps on Intel
Core i9-9900K. In addition, since CSPNet can significantly lower down the computational bottleneck and Exact Fusion
Model (EFM) can effectively cut down the required memory bandwidth, our proposed method can achieve 42% COCO
AP50 at 49 fps on Nvidia Jetson TX2.

2 Related work

CNN architectures design. In ResNeXt [39], Xie et al. first demonstrate that cardinality can be more effective than
the dimensions of width and depth. DenseNet [11] can significantly reduce the number of parameters and computations
due to the strategy of adopting a large number of reuse features. And it concatenates the output features of all preceding
layers as the next input, which can be considered as the way to maximize cardinality. SparseNet [46] adjusts dense
connection to exponentially spaced connection can effectively improve parameter utilization and thus result in better
outcomes. Wang et al. further explain why high cardinality and sparse connection can improve the learning ability
of the network by the concept of gradient combination and developed the partial ResNet (PRN) [35]. For improving
the inference speed of CNN, Ma et al. [24] introduce four guidelines to be followed and design ShuffleNet-v2. Chao
et al. [1] proposed a low memory traffic CNN called Harmonic DenseNet (HarDNet) and a metric Convolutional
Input/Output (CIO) which is an approximation of DRAM traffic proportional to the real DRAM traffic measurement.

Real-time object detector. The most famous two real-time object detectors are YOLOv3 [29] and SSD [21]. Based on
SSD, LRF [38] and RFBNet [19] can achieve state-of-the-art real-time object detection performance on GPU. Recently,
anchor-free based object detector [3, 45, 13, 14, 42] has become main-stream object detection system. Two object
detector of this sort are CenterNet [45] and CornerNet-Lite [14], and they both perform very well in terms of efficiency
and efficacy. For real-time object detection on CPU or mobile GPU, SSD-based Pelee [37], YOLOv3-based PRN [35],
and Light-Head RCNN [17]-based ThunderNet [25] all receive excellent performance on object detection.
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3 Method

3.1 Cross Stage Partial Network

DenseNet. Figure 2 (a) shows the detailed structure of one-stage of the DenseNet proposed by Huang et al. [11].
Each stage of a DenseNet contains a dense block and a transition layer, and each dense block is composed of k dense
layers. The output of the ith dense layer will be concatenated with the input of the ith dense layer, and the concatenated
outcome will become the input of the (i+ 1)th dense layer. The equations showing the above-mentioned mechanism
can be expressed as:

(1)

where ∗ represents the convolution operator, and [x0, x1, ...] means to concatenate x0, x1, ..., and wi and xi are the
weights and output of the ith dense layer, respectively.

If one makes use of a backpropagation algorithm to update weights, the equations of weight updating can be written as:

(2)

where f is the function of weight updating, and gi represents the gradient propagated to the ith dense layer. We can find
that large amount of gradient information are reused for updating weights of different dense layers. This will result in
different dense layers repeatedly learn copied gradient information.

Cross Stage Partial DenseNet. The architecture of one-stage of the proposed CSPDenseNet is shown in Figure 2 (b).
A stage of CSPDenseNet is composed of a partial dense block and a partial transition layer. In a partial dense block, the
feature maps of the base layer in a stage are split into two parts through channel x0 = [x

′

0, x
′′

0 ]. Between x
′′

0 and x
′

0,
the former is directly linked to the end of the stage, and the latter will go through a dense block. All steps involved
in a partial transition layer are as follows: First, the output of dense layers, [x

′′

0 , x1, ..., xk], will undergo a transition
layer. Second, the output of this transition layer, xT , will be concatenated with x

′′

0 and undergo another transition layer,
and then generate output xU . The equations of feed-forward pass and weight updating of CSPDenseNet are shown in
Equations 3 and 4, respectively.

(3)

(4)

We can see that the gradients coming from the dense layers are separately integrated. On the other hand, the feature map
x

′

0 that did not go through the dense layers is also separately integrated. As to the gradient information for updating
weights, both sides do not contain duplicate gradient information that belongs to other sides.
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Overall speaking, the proposed CSPDenseNet preserves the advantages of DenseNet’s feature reuse characteristics, but
at the same time prevents an excessively amount of duplicate gradient information by truncating the gradient flow. This
idea is realized by designing a hierarchical feature fusion strategy and used in a partial transition layer.

Partial Dense Block. The purpose of designing partial dense blocks is to 1.) increase gradient path: Through the
split and merge strategy, the number of gradient paths can be doubled. Because of the cross-stage strategy, one can
alleviate the disadvantages caused by using explicit feature map copy for concatenation; 2.) balance computation of
each layer: usually, the channel number in the base layer of a DenseNet is much larger than the growth rate. Since the
base layer channels involved in the dense layer operation in a partial dense block account for only half of the original
number, it can effectively solve nearly half of the computational bottleneck; and 3.) reduce memory traffic: Assume
the base feature map size of a dense block in a DenseNet is w × h× c, the growth rate is d, and there are in total m
dense layers. Then, the CIO of that dense block is (c×m) + ((m2 +m)× d)/2, and the CIO of partial dense block is
((c×m) + (m2 +m)× d)/2. While m and d are usually far smaller than c, a partial dense block is able to save at
most half of the memory traffic of a network.

Figure 3: Different kind of feature fusion strategies. (a) single path DenseNet, (b) proposed CSPDenseNet: transition
→ concatenation→ transition, (c) concatenation→ transition, and (d) transition→ concatenation.

Partial Transition Layer. The purpose of designing partial transition layers is to maximize the difference of gradient
combination. The partial transition layer is a hierarchical feature fusion mechanism, which uses the strategy of truncating
the gradient flow to prevent distinct layers from learning duplicate gradient information. Here we design two variations
of CSPDenseNet to show how this sort of gradient flow truncating affects the learning ability of a network. 3 (c) and
3 (d) show two different fusion strategies. CSP (fusion first) means to concatenate the feature maps generated by
two parts, and then do transition operation. If this strategy is adopted, a large amount of gradient information will be
reused. As to the CSP (fusion last) strategy, the output from the dense block will go through the transition layer and
then do concatenation with the feature map coming from part 1. If one goes with the CSP (fusion last) strategy, the
gradient information will not be reused since the gradient flow is truncated. If we use the four architectures shown in
3 to perform image classification, the corresponding results are shown in Figure 4. It can be seen that if one adopts
the CSP (fusion last) strategy to perform image classification, the computation cost is significantly dropped, but the
top-1 accuracy only drop 0.1%. On the other hand, the CSP (fusion first) strategy does help the significant drop in
computation cost, but the top-1 accuracy significantly drops 1.5%. By using the split and merge strategy across stages,
we are able to effectively reduce the possibility of duplication during the information integration process. From the
results shown in Figure 4, it is obvious that if one can effectively reduce the repeated gradient information, the learning
ability of a network will be greatly improved.

Apply CSPNet to Other Architectures. CSPNet can be also easily applied to ResNet and ResNeXt, the architectures
are shown in Figure 5. Since only half of the feature channels are going through Res(X)Blocks, there is no need to

5



CSPNet: A New Backbone that can Enhance Learning Capability of CNN A PREPRINT

Figure 4: Effect of truncating gradient flow for maximizing difference of gradient combination.

Figure 5: Applying CSPNet to ResNe(X)t.

introduce the bottleneck layer anymore. This makes the theoretical lower bound of the Memory Access Cost (MAC)
when the FLoating-point OPerations (FLOPs) is fixed.

3.2 Exact Fusion Model

Looking Exactly to predict perfectly. We propose EFM that captures an appropriate Field of View (FoV) for each
anchor, which enhances the accuracy of the one-stage object detector. For segmentation tasks, since pixel-level labels
usually do not contain global information, it is usually more preferable to consider larger patches for better information
retrieval [22]. However, for tasks like image classification and object detection, some critical information can be obscure
when observed from image-level and bounding box-level labels. Li et al. [15] found that CNN can be often distracted
when it learns from image-level labels and concluded that it is one of the main reasons that two-stage object detectors
outperform one-stage object detectors.

Aggregate Feature Pyramid. The proposed EFM is able to better aggregate the initial feature pyramid. The EFM
is based on YOLOv3 [29], which assigns exactly one bounding-box prior to each ground truth object. Each ground
truth bounding box corresponds to one anchor box that surpasses the threshold IoU. If the size of an anchor box is
equivalent to the FoV of the grid cell, then for the grid cells of the sth scale, the corresponding bounding box will be
lower bounded by the (s− 1)th scale and upper bounded by the (s+1)th scale. Therefore, the EFM assembles features
from the three scales.

Balance Computation. Since the concatenated feature maps from the feature pyramid are enormous, it introduces
a great amount of memory and computation cost. To alleviate the problem, we incorporate the Maxout technique to
compress the feature maps.
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Figure 6: Different feature pyramid fusion strategies. (a) Feature Pyramid Network (FPN): fuse features from current
scale and previous scale. (b) Global Fusion Model (GFM): fuse features of all scales. (c) Exact Fusion Model (EFM):
fuse features depand on anchor size.

4 Experiments

We will use ImageNet’s image classification dataset [2] used in ILSVRC 2012 to validate our proposed CSPNet.
Besides, we also use the MS COCO object detection dataset [18] to verify the proposed EFM. Details of the proposed
architectures will be elaborated in the appendix.

4.1 Implementation Details

ImageNet. In ImageNet image classification experiments, all hyper-parameters such as training steps, learning rate
schedule, optimizer, data augmentation, etc., we all follow the settings defined in Redmon et al. [29]. For ResNet-based
models and ResNeXt-based models, we set 8000,000 training steps. As to DenseNet-based models, we set 1,600,000
training steps. We set the initial learning rate 0.1 and adopt the polynomial decay learning rate scheduling strategy.
The momentum and weight decay are respectively set as 0.9 and 0.005. All architectures use a single GPU to train
universally in the batch size of 128. Finally, we use the validation set of ILSVRC 2012 to validate our method.

MS COCO. In MS COCO object detection experiments, all hyper-parameters also follow the settings defined in
Redmon et al. [29]. Altogether we did 500,000 training steps. We adopt the step decay learning rate scheduling strategy
and multiply with a factor 0.1 at the 400,000 steps and the 450,000 steps, respectively. The momentum and weight
decay are respectively set as 0.9 and 0.0005. All architectures use a single GPU to execute multi-scale training in the
batch size of 64. Finally, the COCO test-dev set is adopted to verify our method.

4.2 Ablation Experiments

Ablation study of CSPNet on ImageNet. In the ablation experiments conducted on the CSPNet, we adopt PeleeNet
[37] as the baseline, and the ImageNet is used to verify the performance of the CSPNet. We use different partial ratios
γ and the different feature fusion strategies for ablation study. Table 1 shows the results of ablation study on CSPNet.
In Table 1, SPeleeNet and PeleeNeXt are, respectively, the architectures that introduce sparse connection and group
convolution to PeleeNet. As to CSP (fusion first) and CSP (fusion last), they are the two strategies proposed to validate
the benefits of a partial transition.

From the experimental results, if one only uses the CSP (fusion first) strategy on the cross-stage partial dense block, the
performance can be slightly better than SPeleeNet and PeleeNeXt. However, the partial transition layer designed to
reduce the learning of redundant information can achieve very good performance. For example, when the computation is
cut down by 21%, the accuracy only degrades by 0.1%. One thing to be noted is that when γ = 0.25, the computation is
cut down by 11%, but the accuracy is increased by 0.1%. Compared to the baseline PeleeNet, the proposed CSPPeleeNet
achieves the best performance, it can cut down 13% computation, but at the same time upgrade the accuracy by 0.2%.
If we adjust the partial ratio to γ = 0.25, we are able to upgrade the accuracy by 0.8% and at the same time cut down
3% computation.

Ablation study of EFM on MS COCO. Next, we shall conduct an ablation study of EFM based on the MS COCO
dataset. In this series of experiments, we compare three different feature fusion strategies shown in Figure 6. We choose
two state-of-the-art lightweight models, PRN [35] and ThunderNet [25], to make comparison. PRN is the feature
pyramid architecture used for comparison, and the ThunderNet with Context Enhancement Module (CEM) and Spatial
Attention Module (SAM) are the global fusion architecture used for comparison. We design a Global Fusion Model
(GFM) to compare with the proposed EFM. Moreover, GIoU [30], SPP, and SAM are also applied to EFM to conduct
an ablation study. All experiment results listed in Table 2 adopt CSPPeleeNet as the backbone.
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Table 1: Ablation study of CSPNet on ImageNet.

Model γ
two-way

dense
partial
dense trans. partial

trans. Top-1 BFLOPs

PeleeNet [37] - X X 70.7 1.017
SPeleeNet - X(sparse) X 69.6 0.904
PeleeNeXt - X(group) X 68.9 0.837

0.75 68.4 0.649
CSP (fusion first) 0.5 X X 69.2 0.755

0.25 70.0 0.861

0.75 69.2 0.716
CSP (fusion last) 0.5 X X 70.6 0.804

0.25 70.8 0.902

0.75 70.4 0.800
CSPPeleeNet 0.5 X X 70.9 0.888

0.25 71.5 0.986

Table 2: Ablation study of EFM on MS COCO.

Head global
fusion

exact
fusion atten. BFLOPs FPS AP AP50 AP75

PRN [35] 3.590 169 23.1 44.5 22.0
PRN (swish) 3.590 161 24.1 45.8 23.3
PRN-3l [35] 4.586 151 23.7 46.0 22.2

CEM [25] X 4.049 148 23.8 45.4 22.6
CEM (SAM) [25] X X 4.165 144 24.1 46.0 23.1
GFM X 4.605 134 24.3 46.2 23.3

EFM X 4.868 132 26.4 48.6 26.3
EFM (GIoU [30]) X 4.868 132 27.1 45.9 28.2
EFM (SAM) X X 5.068 129 26.8 49.0 26.7
EFM (SPP) X 4.863 128 26.2 48.5 25.7

As reflected in the experiment results, the proposed EFM is 2 fps slower than GFM, but its AP and AP50 are significantly
upgraded by 2.1% and 2.4%, respectively. Although the introduction of GIoU can upgrade AP by 0.7%, the AP50

is, however, significantly degraded by 2.7%. However, for edge computing, what really matters is the number and
locations of the objects rather than their coordinates. Therefore, we will not use GIoU training in the subsequent
models. The attention mechanism used by SAM can get a better frame rate and AP compared with SPP’s increase of
FoV mechanism, so we use EFM (SAM) as the final architecture. In addition, although the CSPPeleeNet with swish
activation can improve AP by 1%, its operation requires a lookup table on the hardware design to accelerate, we finally
also abandoned the swish activation function.

4.3 ImageNet Image Classification

We apply the proposed CSPNet to ResNet-10 [7], ResNeXt-50 [39], PeleeNet [37], and DenseNet-201-Elastic [36] and
compare with state-of-the-art methods. The experimental results are shown in Table 3.

It is confirmed by experimental results that no matter it is ResNet-based models, ResNeXt-based models, or DenseNet-
based models, when the concept of CSPNet is introduced, the computational load is reduced at least by 10% and
the accuracy is either remain unchanged or upgraded. Introducing the concept of CSPNet is especially useful for the
improvement of lightweight models. For example, compared to ResNet-10, CSPResNet-10 can improve accuracy by
1.8%. As to PeleeNet and DenseNet-201-Elastic, CSPPeleeNet and CSPDenseNet-201-Elastic can respectively cut
down 13% and 19% computation, and either upgrade a little bit or maintain the accuracy. As to the case of ResNeXt-50,
CSPResNeXt-50 can cut down 22% computation and upgrade top-1 accuracy to 77.9%.

If compared with the state-of-the-art lightweight model – EfficientNet-B0, although it can achieve 76.8% accuracy when
the batch size is 2048, when the experiment environment is the same as ours, that is, only one GPU is used, EfficientNet-
B0 can only reach 70.0% accuracy. In fact, the swish activation function and SE block used by EfficientNet-B0 are not
efficient on the mobile GPU. A similar analysis has been conducted during the development of EfficientNet-EdgeTPU.
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Table 3: Compare with state-of-the-art methods on ImageNet.
Model #Parameter BFLOPs Top-1 Top-5

PeleeNet [37] 2.79M 1.017 70.7% 90.0%
PeleeNet-swish 2.79M 1.017 71.5% 90.7%
SEPeleeNet-swish 2.81M 1.017 72.1% 91.0%
CSPPeleeNet 2.83M 0.888 (-13%) 70.9% 90.2%
CSPPeleeNet-swish 2.83M 0.888 (-13%) 71.7% 90.8%
SECSPPeleeNet-swish 2.85M 0.888 (-13%) 72.4% 91.0%
SparsePeleeNet [46] 2.39M 0.904 69.6% 89.3%

EfficientNet-B0* [34] 4.81M 0.915 71.3% 90.4%
EfficientNet-B0** [34] - - 70.0% 88.9%

Darknet Reference [27] 7.31M 0.96 61.1% 83.0%
CSPDenseNet Reference 3.48M 0.886 65.7% 86.6%
CSPPeleeNet Reference 4.10M 1.103 68.9% 88.7%

ResNet-10 [7] 5.24M 2.273 63.5% 85.0%
CSPResNet-10 2.73M 1.905 (-16%) 65.3% 86.5%

ResNeXt-50 [39] 22.19M 10.11 77.8% 94.2%
CSPResNeXt-50 20.50M 7.93 (-22%) 77.9% 94.0%
HarDNet-138s [1] 35.5M 13.4 77.8% -
DenseNet-264-32 [11] 27.21M 11.03 77.8% 93.9%
ResNet-152 [7] 60.2M 22.6 77.8% 93.6%

DenseNet-201-Elastic [36] 19.48M 8.77 77.9% 94.0%
CSPDenseNet-201-Elastic 20.17M 7.13 (-19%) 77.9% 94.0%

Res2Net-50 (10 crop) [5] 25.29M 8.4×10 78.0% 93.8%
Res2NeXt-50 (10 crop) [5] 24.27M 8.4×10 78.2% 93.9%
CSPResNeXt-50 (10 crop) 20.50M 7.9×10 78.2% 94.3%

1 EfficientNet* is implemented by Darknet framework.
2 EfficientNet** is trained by official code with batch size 256.
3 Swish activation function is presented by [4, 26].
4 Squeeze-and-excitation (SE) network is presented by [10].

Here, for demonstrating the learning ability of CSPNet, we introduce swish and SE into CSPPeleeNet and then make
a comparison with EfficientNet-B0*. In this experiment, SECSPPeleeNet-swish cut down computation by 3% and
upgrade 1.1% top-1 accuracy.

Proposed CSPResNeXt-50 is compared with ResNeXt-50 [39], ResNet-152 [7], DenseNet-264 [11], and HarDNet-138s
[1], regardless of parameter quantity, amount of computation, and top-1 accuracy, CSPResNeXt-50 all achieve the best
result. As to the 10-crop test, CSPResNeXt-50 also outperforms Res2Net-50 [5] and Res2NeXt-50 [5].

4.4 MS COCO Object Detection

In the task of object detection, we aim at three targeted scenarios: (1) real-time on GPU: we adopt CSPResNeXt50 with
PANet (SPP) [20]; (2) real-time on mobile GPU: we adopt CSPPeleeNet, CSPPeleeNet Reference, and CSPDenseNet
Reference with the proposed EFM (SAM); and (3) real-time on CPU: we adopt CSPPeleeNet Reference and CSP-
DenseNet Reference with PRN [35]. The comparisons between the above models and the state-of-the-art methods
are listed in Table 4. As to the analysis on the inference speed of CPU and mobile GPU will be detailed in the next
subsection.

If compared to object detectors running at 30∼100 fps, CSPResNeXt50 with PANet (SPP) achieves the best performance
in AP, AP50 and AP75. They receive, respectively, 38.4%, 60.6%, and 41.6% detection rates. If compared to state-of-
the-art LRF [38] under the input image size 512×512, CSPResNeXt50 with PANet (SPP) outperforms ResNet101 with
LRF by 0.7% AP, 1.5% AP50 and 1.1% AP75. If compared to object detectors running at 100∼200 fps, CSPPeleeNet
with EFM (SAM) boosts 12.1% AP50 at the same speed as Pelee [37] and increases 4.1% [37] at the same speed as
CenterNet [45].

If compared to very fast object detectors such as ThunderNet [25], YOLOv3-tiny [29], and YOLOv3-tiny-PRN [35],
the proposed CSPDenseNetb Reference with PRN is the fastest. It can reach 400 fps frame rate, i.e., 133 fps faster
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Table 4: Compare with state-of-the-art methods on MSCOCO Object Detection.

Method Backbone Size FPS BFLOPs #Parameter AP AP50 AP75 APS APM APL

YOLOv3 [29] DarkNet53 [29] 608×608 30 140.7 62.3M 33.0 57.9 34.4 18.3 25.4 41.9
YOLOv3 (SPP) [29] DarkNet53 [29] 608×608 30 141.5 62.9M 36.2 60.6 38.2 20.6 37.4 46.1
LRF [38] ResNet101 [7] 512×512 31 - - 37.3 58.5 39.7 19.7 42.8 50.1
SSD [21] HarDNet85 [1] 512×512 32 - - 35.1 54.8 37.6 15.0 38.9 51.5
M2Det [44] VGG16 [32] 320×320 33 - - 33.5 52.4 35.6 14.4 37.6 47.6
PFPNet (R) [12] VGG16 [32] 320×320 33 - - 31.8 52.9 33.6 12.0 35.5 46.1
DAFS [16] VGG16 [32] 512×512 35 - - 33.8 52.9 36.9 14.6 37.0 47.7
RFBNet [19] VGG16 [32] 512×512 35 - - 33.8 54.2 35.9 16.2 37.1 47.4
PANet (SPP) [20] CSPResNeXt50 608×608 35 100.6 56.9M 38.4 60.6 41.6 22.1 41.8 47.6
SSD [21] HarDNet68 [1] 512×512 38 - - 31.7 51.0 33.8 12.5 35.1 47.9
LRF [38] VGG16 [32] 512×512 38 - - 36.2 56.6 38.7 19.0 39.9 48.8
PFPNet (S) [12] VGG16 [32] 300×300 39 - - 29.6 49.6 31.1 10.6 32.0 44.9
RefineDet [41] VGG16 [32] 320×320 40 - - 29.4 49.2 31.3 10.0 32.0 44.4
SSD [21] VGG16 [32] 300×300 44 70.4 34.3M 25.7 43.9 26.2 6.9 27.7 42.6
PANet (SPP) [20] CSPResNeXt50 512×512 44 71.3 56.9M 38.0 60.0 40.8 19.7 41.4 49.9
CenterNet [45] ResNet101 [7] 512×512 45 - - 34.6 53.0 36.9
YOLOv3 [29] DarkNet53 [29] 416×416 46 65.9 62.3M 31.0 55.3 32.3 15.2 33.2 42.8
PANet (SPP) [20] CSPResNeXt50 416×416 53 47.1 56.9M 36.6 58.1 39.0 16.2 39.5 50.9
TTFNet [23] DarkNet53 [29] 512×512 54 - - 35.1 52.5 37.8 17.0 38.5 49.5
YOLOv3 [29] DarkNet53 [29] 320×320 56 39.0 62.3M 28.2 51.5 29.7 11.9 30.6 43.4
PANet (SPP) [20] CSPResNeXt50 320×320 58 27.9 56.9M 33.4 54.0 35.1 11.8 35.3 50.9

Pelee [37] PeleeNet [37] 304×304 106 2.58 5.98M 22.4 38.3 22.9
EFM (SAM) CSPPeleeNet 512×512 109 7.68 4.31M 27.6 50.4 27.7 12.4 30.1 36.2
TTFNet [23] ResNet18 [7] 512×512 112 - - 28.1 43.8 30.2 11.8 29.5 41.5
CenterNet [45] ResNet18 [7] 512×512 129 - - 28.1 44.9 29.6
EFM (SAM) CSPPeleeNet 416×416 129 5.07 4.31M 26.8 49.0 26.7 9.8 28.2 38.8
PRN [35] PeleeNet [37] 416×416 145 4.04 3.16M 23.3 45.0 22.0 6.7 24.8 35.1

EFM (SAM) [35] CSPPeleeNet Ref. 320×320 205 3.43 5.67M 23.5 44.6 22.7 7.1 23.6 36.1
ThunderNet [25] SNet535 [25] 320×320 214 2.60 - 28.0 46.2 29.5
EFM (SAM) [35] CSPDenseNet Ref. 320×320 235 2.89 5.05M 21.7 42.2 20.6 6.3 21.3 33.3
ThunderNet [25] SNet146 [25] 320×320 248 0.95 - 23.6 40.2 24.5
ThunderNet [25] SNet49 [25] 320×320 267 0.52 - 19.1 33.7 19.6
PRN (3l) [35] CSPPeleeNet Ref. 320×320 267 3.15 4.79M 19.4 40.0 17.0 5.8 18.8 31.1

PRN [35] CSPPeleeNet Ref. 320×320 306 2.56 4.59M 18.8 38.5 16.6 5.0 18.9 31.4
YOLOv3 (tiny) [29] DarkNet Ref. [29] 416×416 330 5.57 8.86M 33.1
PRN [35] CSPDenseNet Ref. 320×320 387 2.01 3.97M 16.8 35.4 14.3 4.4 16.6 28.5
PRN [35] DarkNet Ref. [29] 416×416 400 3.47 4.96M 33.1
PRN [35] CSPDenseNetb Ref. 320×320 400 1.59 1.87M 15.3 34.2 12.0 3.6 16.1 23.4

1 The table is separated into four parts, <100 fps, 100∼200 fps, 200∼300 fps, and >300 fps.
2 We mainly focus on FPS and AP50 since almost all applications need fast inference to locate and count objects.
3 Inference speed are tested on GTX 1080ti with batch size equals to 1 if possible, and our models are tested using Darknet [28].
4 All results are obtained by COCO test-dev set except for TTFNet [23] models which are verified on minval5k set.

than ThunderNet with SNet49. Besides, it gets 0.5% higher on AP50. If compared to ThunderNet146, CSPPeleeNet
Reference with PRN (3l) increases the frame rate by 19 fps while maintaining the same level of AP50.

4.5 Analysis

Computational Bottleneck. Figure 7 shows the BLOPS of each layer of PeleeNet-YOLO, PeleeNet-PRN and proposed
CSPPeleeNet-EFM. From Figure 7, it is obvious that the computational bottleneck of PeleeNet-YOLO occurs when the
head integrates the feature pyramid. The computational bottleneck of PeleeNet-PRN occurs on the transition layers of
the PeleeNet backbone. As to the proposed CSPPeleeNet-EFM, it can balance the overall computational bottleneck,
which reduces the PeleeNet backbone 44% computational bottleneck and reduces PeleeNet-YOLO 80% computational
bottleneck. Therefore, we can say that the proposed CSPNet can provide hardware with a higher utilization rate.

Memory Traffic. Figure 8 shows the size of each layer of ResNeXt50 and the proposed CSPResNeXt50. The
CIO of the proposed CSPResNeXt (32.6M) is lower than that of the original ResNeXt50 (34.4M). In addition, our
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Figure 7: Computational bottleneck of PeleeNet-YOLO, PeleeNet-PRN and CSPPeleeNet-EFM.

CSPResNeXt50 removes the bottleneck layers in the ResXBlock and maintains the same numbers of the input channel
and the output channel, which is shown in Ma et al. [24] that this will have the lowest MAC and the most efficient
computation when FLOPs are fixed. The low CIO and FLOPs enable our CSPResNeXt50 to outperform the vanilla
ResNeXt50 by 22% in terms of computations.

Figure 8: Input size and output size of ResNeXt and proposed CSPResNeXt.

Inference Rate. We further evaluate whether the proposed methods are able to be deployed on real-time detectors with
mobile GPU or CPU. Our experiments are based on NVIDIA Jetson TX2 and Intel Core i9-9900K, and the inference
rate on CPU is evaluated with the OpenCV DNN module. We do not adopt model compression or quantization for fair
comparisons. The results are shown in Table5.

If we compare the inference speed executed on CPU, CSPDenseNetb Ref.-PRN receives higher AP50 than SNet49-
TunderNet, YOLOv3-tiny, and YOLOv3-tiny-PRN, and it also outperforms the above three models by 55 fps, 48 fps,
and 31 fps, respectively, in terms of frame rate. On the other hand, CSPPeleeNet Ref.-PRN (3l) reaches the same
accuracy level as SNet146-ThunderNet but significantly upgrades the frame rate by 20 fps on CPU.

If we compare the inference speed executed on mobile GPU, our proposed EFM will be a good model to use. Since our
proposed EFM can greatly reduce the memory requirement when generating feature pyramids, it is definitely beneficial
to function under the memory bandwidth restricted mobile environment. For example, CSPPeleeNet Ref.-EFM (SAM)
can have a higher frame rate than YOLOv3-tiny, and its AP50 is 11.5% higher than YOLOv3-tiny, which is significantly
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Table 5: Inference rate on mobile GPU (mGPU) and CPU
real-time object detectors (in fps).
Model Size GPU CPU mGPU AP50

SNet146-Thunder [25] 320 248 32 - 40.2
SNet49-Thunder [25] 320 267 47 - 33.7

YOLOv3-tiny [29] 416 330 54 37 33.1
YOLOv3-tiny-PRN [35] 416 400 71 49 33.1

CSPPeleeNet Ref.-EFM (SAM) 320 205 - 41 44.6
CSPDenseNet Ref.-EFM (SAM) 320 235 - 49 42.2

CSPPeleeNet Ref.-PRN (3l) 320 267 52 38 40.0
CSPPeleeNet Ref.-PRN 320 306 75 52 38.5
CSPDenseNet Ref.-PRN 320 387 95 64 35.4
CSPDenseNetb Ref.-PRN 320 400 102 73 34.2

upgraded. For the same CSPPeleeNet Ref. backbone, although EFM (SAM) is 62 fps slower than PRN (3l) on GTX
1080ti, it reaches 41 fps on Jetson TX2, 3 fps faster than PRN (3l), and at AP50 4.6% growth.

5 Conclusion

We have proposed the CSPNet that enables state-of-the-art methods such as ResNet, ResNeXt, and DenseNet to be
light-weighted for mobile GPUs or CPUs. One of the main contributions is that we have recognized the redundant
gradient information problem that results in inefficient optimization and costly inference computations. We have
proposed to utilize the cross-stage feature fusion strategy and the truncating gradient flow to enhance the variability
of the learned features within different layers. In addition, we have proposed the EFM that incorporates the Maxout
operation to compress the features maps generated from the feature pyramid, which largely reduces the required memory
bandwidth and thus the inference is efficient enough to be compatible with edge computing devices. Experimentally,
we have shown that the proposed CSPNet with the EFM significantly outperforms competitors in terms of accuracy and
inference rate on mobile GPU and CPU for real-time object detection tasks.
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