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Remote Sensing Change Detection with
Transformers Trained from Scratch
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and Fahad Shahbaz Khan

Abstract—Current transformer-based change detection (CD)
approaches either employ a pre-trained model trained on large-
scale image classification ImageNet dataset or rely on first pre-
training on another CD dataset and then fine-tuning on the target
benchmark. This current strategy is driven by the fact that trans-
formers typically require a large amount of training data to learn
inductive biases, which is insufficient in standard CD datasets
due to their small size. We develop an end-to-end CD approach
with transformers that is trained from scratch and yet achieves
state-of-the-art performance on five benchmarks. Instead of using
conventional self-attention that struggles to capture inductive
biases when trained from scratch, our architecture utilizes a
shuffled sparse-attention operation that focuses on selected sparse
informative regions to capture the inherent characteristics of the
CD data. Moreover, we introduce a change-enhanced feature
fusion (CEFF) module to fuse the features from input image
pairs by performing a per-channel re-weighting. Our CEFF
module aids in enhancing the relevant semantic changes while
suppressing the noisy ones. Extensive experiments on five CD
datasets reveal the merits of the proposed contributions, achieving
gains as high as 1.35% in intersection over union (IoU) score,
compared to the best-published results in the literature. Code is
available at https://github.com/mustansarfiaz/ScratchFormer.

Index Terms—Remote Sensing, Change Detection, Transform-
ers.

I. INTRODUCTION

CHANGE DETECTION (CD) is a fundamental remote
sensing research problem that strives to identify all rel-

evant changes between co-registered satellite images acquired
at distinct timestamps. CD plays a crucial role in various
remote sensing applications including, disaster management
[1], urban planning [2], forestry and ecosystem monitoring
[3], [4]. The objective of the CD task is to detect relevant
semantic changes in man-made facilities such as buildings
and other constructions while ignoring noisy changes such
as shadows, illumination variations, and all types of seasonal
and environmental variations. Fig. 1 shows a few challenges
related to the CD problem in bi-temporal satellite images.
For instance, trees, shadows, and cars in Fig. 1-(a) and (b)
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Fig. 1. Figure illustrates various challenges in satellite images for the change
detection task including (a) trees and their shadows, (b) cars and shadow
directions, (c) illumination variations, (d) scattered subtle and large semantic
change regions, and (e) seasonal conditions. The first, second, and third rows
indicate the pre-change, post-change, and ground truth images, respectively.

may limit the detection performance. Likewise, illumination
variations and environmental conditions may affect the color
of the objects as depicted in Fig. 1-(c). In Fig. 1-(d), accurate
detection of subtle and large change regions is a challenging
task due to scale variations and densely constructed regions.
Lastly, Fig. 1-(e), highlights the weather condition challenges
which may affect the CD performance. Therefore, extracting
meaningful feature representations while neglecting the irrel-
evant information is necessary for the CD task.

Generally, CD approaches relying on convolutional neural
networks (CNN) have shown promising results by utilizing
explicit mechanisms such as dilated convolutions, channel and
spatial attentions. Zhang et al. [5] utilized atrous convolution
based CNN to obtain dense feature representation. DASNet
[6] uses dilated convolutions along with the standard con-
volutions to extract local feature representations and apply
dual attention mechanism to further enhance those features.
Some approaches [7], [8] utilized standard convolutions with
pooling layers to extract deep features at multiscale levels.
STANet [9] uses standard CNN networks for deep feature
extraction and utilizes spatial and temporal attention modules
to refine those features representations. However, these CNN-
based approaches typically struggle to capture long-range
dependencies between different image regions, hampering the
change detection performance.

Recently, transformer-based CD methods [10], [11], [12],
[13], [14], [15], [16] have shown competitive performance on
various CD datasets by capturing long-range dependencies be-
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(a) Pre-change image (e) Ground Truth(c) ChangeFormer (d) ScratchFormer (Ours)(b) Post-change image

Fig. 2. Change detection performance comparison of (d) our approach (ScratchFormer) with (c) the recent ChangeFormer. Here, (a) the pre-change image and
(b) post-change image are shown along with (e) the ground-truth. We show the false positives and false negatives in the purple and red colors, respectively. In
the first two rows, the ChangeFormer fails to detect the change occurring between the pre- and post-images (red box in both rows). Similarly, the ChangeFormer
incorrectly detects a change region (purple box), as indicated in the ground-truth. Our ScratchFormer achieves improved change detection performance, in
different challenging scenarios, by reducing both false positives and negatives. Best viewed zoomed in.

tween uniformly sampled dense patches through self-attention
[17]. Although achieving superior CD performance, state-
of-the-art transformer-based methods [10] generally require
pre-training based weight initialization for optimal conver-
gence. The pre-training step in existing transformer-based
CD methods either involves another CD dataset [10] or
an ImageNet pre-trained image classification model [16],
[11], [12], [18], [14]. In addition, several Siamese network-
based supervised contrastive pretraining methods have been
proposed to handle overfitting, but random initialization lacks
any prior CD knowledge [19], [20]. Zhang et al. [21] studied
different metric learning and proposed spatial–temporal triplet
loss (STTL) for the CD task. However, the performance of
these transformer-based CD methods drastically reduces when
directly training from scratch on the target CD dataset. This
is likely due to the dense self-attention operation, utilized in
these approaches, which has quadratic complexity with respect
to tokens, requires longer to converge, and is prone to over-
fitting. In this work, we look into the problem of designing
a transformer-based CD approach that is capable of achieving
high performance when trained from scratch.

Most existing transformer-based CD approaches employ a
two-stream architecture, where features from both streams
are combined through simple operations such as difference,
summation, and concatenation [22], [10]. However, these
approaches do not employ any explicit feature re-weighting
between both streams. We argue that such naive feature fusion

strategies likely struggle to effectively aggregate semantic
changes from each stream. In this work, we set out to address
the above issues collectively in a single transformer-based CD
architecture.

In this paper, we propose a transformer-based Siamese two-
stream CD framework, named ScratchFormer, that is based on
a novel shuffled sparse attention (SSA) operation that strives
to better attend to sparse informative regions relevant to the
CD task. The proposed SSA performs token-mixing over a
sparse subset of shuffled features obtained through a data-
dependent feature sampling, enabling optimal CD performance
when being trained from scratch directly on the target CD
dataset. Furthermore, we introduce a change-enhanced feature
fusion module (CEFF) that performs feature fusion based on
per-channel re-calibration to enhance the features relevant to
the semantic changes, while suppressing the noisy ones. We
perform extensive experiments on five public CD datasets:
LEVIR-CD [9], DSIFN-CD [7], WHU-CD [23], CDD-CD
[24], and OSCD [25]. Our proposed ScratchFormer approach
achieves superior performance over the baseline, highlighting
the effectiveness of the proposed contributions. Compared to
the baseline, our ScratchFormer achieves an absolute gain of
1.35% in terms of intersection over union (IoU) on the CDD-
CD dataset. Furthermore, ScratchFormer sets a new state-
of-the-art performance on all five datasets. On the LEVIR-
CD, our ScratchFormer achieves an IoU score of 84.63%,
outperforming the recent method [10] published in literature
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by 2.15%. Fig. 2 shows a qualitative comparison between the
recent ChangeFormer [10] and our ScratchFormer on different
challenging CD examples.

We summarize our contributions as follows:
• We propose a hierarchical transformer-based Siamese

two-stream change detection algorithm, dubbed as
ScratchFormer, which is trained from scratch and yet
achieves state-of-the-art performance, hence removing the
pre-training requirement on another CD dataset and then
fine-tuning on the target benchmark.

• We propose a shuffled sparse attention that benefits from
the sparse informative regions for the CD task. The
proposed SSA operation performs token-mixing over a
sparse subset of shuffled features obtained through data-
dependent feature sampling.

• We propose a change-enhanced feature fusion module
that is responsible for highlighting the semantic features
while ignoring the noisy ones.

• Extensive experiments on five CD datasets validate the
merits of our proposed algorithm. Our algorithm shows
state-of-the-art performance compared to CNN, trans-
former, and hybrid CD approaches.

II. RELATED WORK

Convolutional neural networks have attained much pop-
ularity in remote sensing change detection due to intrinsic
properties to capture discriminative features [18]. Chen et
al. [6] propose a dual attention mechanism within Siamese
CNN to encode long-range dependencies. The Siamese CNN
module is used to extract local features from the image
pairs. Then, a dual attention module is utilized to obtain the
global contextual features for better separation of changed and
unchanged regions. Fang et al. [26] propose a dense Siamese
network to extract features from bi-temporal images and use an
ensemble channel attention module to refine and aggregate the
features at multiple semantic levels. The aim of the proposed
module is to suppress the semantic gaps and reduce the
localization error of the change regions. A feature pyramid
with attention mechanism is proposed to encode long-range
dependencies in [27]. Authors utilize VGG16 [28] network as
a backbone feature extractor. A co -attention module is then
used to aggregate the low and high-level features for better
detection results. Liu et al. [29] use multi-scale convolutional
attention features to learn the bi-temporal feature differences
via adversarial learning. The authors employ a super-resolution
module consisting of a generator and a discriminator to
learn the mapping between a low and high-resolution image
via adversarial learning. Then a stacked attention module is
utilized to enhance the discriminative features at multi-scale
level. Hou et al. [30] employ low rank analysis to benefit from
deep features for CD. Xu et al. [31] propose MFPNet which
performs channel attention for the CD task. Similarly, Wang et
al. [32] make use of spatial and channel attention to improve
feature representations. RaSRNet [33] introduces a graph-
based relation-aware to handle the restricted receptive field
of CNNs for the CD task. Chen et al. [9] introduce Siamese-
based network to capture spatial–temporal dependencies using

spatial attention and channel attention. Zhang et al. [7] propose
a deep supervised image fusion network for CD. A Siamese-
based CNN is used for feature extraction from bi-temporal
images. The extracted features are input to the difference
discrimination network and the change detection mask is
obtained through deep supervision.

Recently, transformers [17] have gained popularity for the
CD task [34]. Chen et al. [16] introduce a bitemporal image
transformer (BIT) to model context information. BIT utilizes
ResNet18 [35] for feature extraction from the remote sensing
image pairs. The extracted features are converted to a set
of semantic tokens and a contextual relationship is modeled
between the sets of token features through a transformer
encoder. The encoded features are projected back to spatial
space by utilizing a Siamese transformer decoder. A shallow
CNN module is then used to predict the change mask. Li et
al. [11] introduce TransUNetCD, which benefits from both
transformers and UNet for CD. TransUNetCD utilizes a CNN
to extract features from bi-temporal images followed by a
transformer to obtain better discriminative features for the
change detection task. Zhou et al. [36] use self-attention to
model contextual-semantic relations between the input bi-
temporal images. Zhao et al. [37] propose a position matching
mechanism (PMM) to perform sparse pixel-level adaptive
matching of multitemporal images utilizing geospatial position
and content reasoning mechanism (CRM) to discriminate the
diverse pseudo-change information. Hu et al. [38] employ
an unsupervised joint learning model utilizing total variation
regularization and bipartite CNN. Fang et al. [39] propose
a Siamese network to compute multi-layered features and
perform feature exchange operations for the two steams for
the CD task.

Zhang et al. [40] utilize hierarchical Swin transformer [41]
to extract global information in bi-temporal images. Song et
al. [12] utilizes a multi-scale Swin transformer to enhance the
extracted features from a Siamese-based CNN network at the
multi-scale level. Wang et al. [42] propose STCN which ex-
ploits cross Swin transformer to extract global features. Teng et
al. [43] introduce SFCD which improves representation using
the foreground aware fusion module to use attention gates to
trim low-level feature responses. Hong et al. [44] integrate the
multi-task network into Swin transformer to use the available
training samples for representative feature learning. Ke et al.
[14] propose a hybrid transformer to capture global context
dependencies at multiple scales. After extracting features from
a CNN backbone, proposed hybrid transformer is utilized
to learn the global context relationships before input to the
cascade decoder for change map prediction. Bandara et al. [10]
propose a hierarchical Siamese transformer to render multi-
scale features. The Siamese encoder utilizes self attention and
a convolution layer to learn the discriminative features. Dif-
ferent to existing approaches, we introduce SSA to effectively
capture the inductive CD bias when training from scratch on
any change detection (target) dataset. Further, a CEFF module
to perform per-channel re-weighting to enhance the feature
channels having higher semantic changes, while suppressing
the channels encoding noisy changes.
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III. PRELIMINARIES

Problem Formulation: Given Ipre, Ipost ∈ R3×H×W as a
pair of co-registered satellite images acquired at distinct times
T1 and T2, the objective in CD is to detect relevant semantic
changes between Ipre and Ipost while ignoring irrelevant
changes. Here, the relevant changes include changes in man-
made facilities such as buildings and other constructions.
On the other hand, the irrelevant changes include seasonal
variations, illumination changes, building shadows, and at-
mospheric variations. Consequently, the goal in CD is to
predict a binary mask M ∈ RH×W that depicts the semantic
(structural) changes between Ipre and Ipost.

A. Baseline Change Detection Framework

We adapt the recently introduced transformer-based ap-
proach [10] as our base framework since it achieves promising
performance for the CD task. The base CD framework takes
an image pair as input and computes the semantic difference
between them using a transformer-based Siamese network.
It comprises a transformer encoder, difference feature fusion
module, and a decoder. The encoder consists of a series
of attention layers with each layer comprising the standard
self-attention [17] followed by a feed-forward network. The
encoder weights are shared and utilized for computing multi-
scale features in both streams (pre-change and post-change).
For each scale i, the resulting features F i

pre, F
i
post from both

the streams are input to a difference feature fusion module,
which encodes the semantic changes occurring between the
streams in the corresponding scale. The difference feature
fusion module comprises a feature concatenation followed by
two convolutions with batch normalization and ReLU layers
in between. It then outputs the feature F i

diff for scale i. These
multi-scale features F i

diff are then input to the decoder, where
they are fused through a series of convolution and transpose
convolution layers for increasing the spatial resolution of
feature maps. Finally, the resulting upsampled features are
passed to a mask prediction layer to obtain final semantic
binary change map M .
Limitations: As discussed above, the base framework em-
ploys the transformer encoder with the standard self-attention
mechanism to capture long-range dependencies in an image.
Here, we argue that the standard self-attention mechanism
is sub-optimal for the CD task mainly due to the following
reasons. It operates on uniformly sampled dense patches,
thereby requiring large training data for optimal convergence
in terms of CD performance (see Fig. 3). The recent Change-
Former [10] alleviates this issue by performing pre-training on
one (source) CD dataset followed by fine-tuning on another
(target) CD data. However, this increases the training time
when including the cost of pre-training on another CD dataset
as well. Furthermore, despite being trained from scratch the
proposed ScratchFormer outperforms our baseline accuracy
that is achieved through a pre-training step on another CD
dataset, with less than 50% of the training time.
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Fig. 3. Comparison, in terms of intersection over union (IoU) vs. the training
epochs, among the baseline trained from scratch, baseline pre-trained† first
on another CD dataset and then fine-tuned, and our approach on the LEVIR-
CD. Compared to the baseline employing pre-training, training the baseline
from scratch results in inferior convergence in terms of CD performance. Our
approach despite being trained from scratch achieves superior convergence in
terms of CD performance compared to both variants of baseline. For instance,
with less than 50% of the training time, our approach achieves similar CD
performance to that of the final results obtained from the baseline trained
from scratch.

IV. METHOD

A. Motivation

To motivate our proposed approach, we distinguish two
properties especially desired when designing a transformer-
based CD method.

1) Rethinking Attention for CD Task: As discussed earlier,
the conventional self-attention may lead to sub-optimal perfor-
mance when training from scratch directly on the target CD
dataset, likely due to difficulty in capturing the inherent in-
ductive biases in the small CD dataset. Moreover, the standard
self-attention typically operates on uniformly sampled dense
patches that may have difficulties to learn a rich feature rep-
resentation encoding diverse shape objects with inconsistent
appearance in remote sensing scenes having sparse informative
regions. Therefore, rethinking the design of self-attention is
desired to effectively learn a rich feature representation by
attending to sparse informative regions in remote sensing CD
images.

2) Semantic Change-enhanced Feature Fusion: Though
the above requisite focuses on designing a mechanism to
attend sparse informative regions for the CD task, the second
desirable characteristic aims at capturing the semantic differ-
ences between image pairs while ignoring the irrelevant noisy
changes. To this end, a change-enhanced feature fusion module
that explicitly models per-channel inter-dependencies between
pre- and post-change images is expected to better ignore
the noisy changes while retaining the relevant ones. Next,
we present our proposed transformer-based ScratchFormer
framework.
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Fig. 4. Overall architecture of our ScratchFormer framework for Change Detection. Our ScratchFormer takes two inputs, pre- and post-change images,
and predicts a binary semantic change map for the corresponding image pair. ScratchFormer consists of a Siamese-based hierarchical encoder having four
different stages, a change-enhanced feature fusion (CEFF) module, and a decoder for predicting binary change map. The focus of our design is the introduction
of a shuffled sparse attention (SSA) layer (Sec. IV-C) in the encoder and a change-enhanced feature fusion (CEFF) module (Sec. IV-D). The SSA layer
comprises shuffled sparse attention and a MLP, as shown in (a). SSA performs token-mixing over a sparse data-dependent subset of features at each stage.
Our ScratchFormer approach computes SSA features from the two streams F̂ i

pre and F̂ i
post at different scales i. The outputs of these stages are fused utilizing

the CEFF module, as shown in (b). The CEFF module enhances the semantic changes between the features of the two streams by performing a per-channel
re-weighting at each scale and outputs enhanced features F̂ i

enh. These enhanced features are then input to the decoder for predicting the final semantic binary
change map M .

B. Overall Architecture

Fig. 4 shows the overall architecture of our ScratchFormer.
The proposed ScratchFormer takes pre- and post-change image
pairs (Ipre, Ipost) as input. It comprises a Siamese-based
encoder, a change-enhanced feature fusion module, and a
decoder for predicting the binary change map M . The encoder
computes the features at four stages with different spatial
resolutions. At each stage, the features are first spatially
downsampled through convolutional layers and then input to
the SSA layers. The ScratchFormer consists of two parallel
identical encoder streams with shared weights to generate
pre- and post- change features F̂ i

pre, F̂ i
post, respectively at

the i-th stage of our multi-stage network. The focus of our
design is the introduction of a novel shuffled sparse attention
layer in the encoder to perform the self-attention on the data-
dependent subset of features to effectively capture the semantic
changes for CD task. Furthermore, we propose a change-
enhanced feature fusion module that re-calibrates the per-
channel features of the same scale from both streams (F̂ i

pre and
F̂ i
post) and performs enhanced feature fusion to better ignore

the noisy changes while retaining the relevant ones.
Our SSA layer comprises a shuffled sparse attention and

a multi-layer-perceptron (MLP), as shown in Fig. 4-(a). SSA
first performs a data-dependent sampling of features to obtain
a subset and then performs token-mixing over the selected
subset. SSA strives to focus on the sparse informative regions
for change detection to achieve optimal convergence with

respect to CD performance without requiring pre-training on
another CD data. The CEFF modules aims to enhance the
semantic changes between pre- and post- change features at
each stage of the encoder, while suppressing the noisy changes.
The resulting enhanced features from the CEFF module are
re-sized to a common spatial resolution and passed to the
decoder. The decoder has a series of convolution, transpose
convolution, and upsampling layers to increase the spatial
resolution of the feature maps. Consequently, these upsampled
features are passed to a mask prediction layer to obtain the
final binary mask M . We also present Algorithm 1 for a better
understanding of our overall framework. Next, we present our
SSA layer.

C. Shuffled Sparse Attention Layer

We introduce a shuffled sparse attention layer within our
encoder to capture semantic changes between the input image
pairs Ipre and Ipost.

As shown in Fig. 4-(a), it comprises a shuffled sparse
attention to perform token-mixing, a multi-layer perceptrons,
and layer normalization layers. Our SSA performs token-
mixing over a sparse subset of features which are selected
based on a data-dependent sampling strategy. Let, F i ∈
RCi×Hi×W i

be the encoder feature at stage i input to SSA.
Then, our SSA is computed in two steps. First, we perform
a data-dependant sparse sub-sampling of input features with a
sparsity factor of γ to obtain feature sub-sets F̄ i

kl. Then, we
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separately perform self-attention over these γ2 feature subsets
F̄ i
kl, where k = {0, ..., γ−1} and l = {0, ..., γ−1}. The data-

dependant sparse spatial sub-sampling of features is performed
as follows:

F̄ i
kl(x̄, ȳ) = F i(γx̄+ k +∆x, γȳ + l +∆y)

∀x̄ = {0, ..., H
i

γ
− 1} and ∀ȳ = {0, ..., W

i

γ
− 1}. (1)

Here, (∆x, ∆y), represents the data-dependent position
offsets which are predicted using learnable parameters θoffset as
∆z = θoffset(F

i) [45]. The predicted offsets ∆z ∈ R2×Hi×W i

have two channels depicting the horizontal and vertical po-
sition offsets at each pixel, which are clipped to limit the
maximum distance from the current feature location. Then,
the position offsets ∆x, ∆y are obtained as:

∆x = ∆z(γx̄+ k, γȳ + l, 1)

∆y = ∆z(γx̄+ k, γȳ + l, 2).

The resulting sparse-sampled features F̄ i
kl are used to compute

self-attention [17] (Attention(.)) over the γ2 sparse windows
as follows:

F̂ i
kl = Attention(F̄ i

kl) (2)

These attended features F̂ i
kl from γ2 feature subsets are then

shuffled back to the original resolution feature map to obtain
F̂ i ∈ RCi×Hi×W i

. Here, the data-dependent position offsets
aid in adaptively sampling dense features from regions likely
to have semantic changes, whereas the sparse sampling helps
to efficiently maintain the global receptive field. For better
understanding, we present the flowchart for the computation of
data-dependent shuffled-sparsed feature samples in Fig. 5. Due
to the sparse sampling, we perform γ2 self-attention operations
and in each self-attention operation the number of tokens are
reduced by a factor of γ2, leading to a O(γ2) reduction in the
overall computation. Our SSA enables faster convergence due
to its sparse structure allowing self attention to focus on the
sub-sampled relevant features. Our proposed ScratchFormer
approach employs SSA layers at each stage of the encoder
and computes pre- and post- change features F̂ i

pre, F̂ i
post, from

both streams of the encoder. These features are then fused by
the change-enhanced feature fusion module described next.

D. Change Enhanced Features Fusion Module

As discussed earlier, given the diverse nature of the changes
in real-world scenarios that can possibly occur in the image
pairs, detecting high-level semantic changes while ignoring
the noisy ones is one of the major challenges in the CD
task. Therefore, it is desired to effectively fuse the features
from pre- and post-change feature streams of the encoder.
Within several existing transformers-based CD methods [16],
[10], [46], multi-level feature fusion between pre- and post
change features is performed through difference, summation
or concatenation operations. Similarly, the base framework
also introduces a difference module employing concatenation
across channel dimension for the feature fusion. We argue
that such a fusion of the features from both streams without
explicitly re-weighting the channels from each stage is sub-
optimal for the CD task. To this end, we introduce a CEFF

Fig. 5. Illustration of sparse feature shuffling depicted in Eq. 1. The input
features F i are passed to offset computation layer to generate the data-
dependent position offsets ∆z. Sparse sub-sampled features are extracted
using sparsity factor γ. The computed offsets are then utilized to get shuffled
sparse features F̄ i.

module that performs per-channel re-weighting to enhance the
channels having higher semantic changes, while suppressing
the channels capturing noisy changes. Fig 4-(b) shows the
structure of our change-enhanced feature fusion module. The
CEFF module is introduced at all four stages of the encoder
to fuse the features at each stage.

In our CEFF module, we first combine the pre- and post-
change features F̂ i

pre, F̂ i
post through addition, and then perform

global average pooling (GAP ) to obtain a global feature vector
pi as follows:

pi = GAP (F̂ i
pre + F̂ i

post), (3)

We input pi feature vector to shared Conv-ReLU layers to
reduce the number of channels. Afterwards, these reduced
features are passed to separate 1 × 1 conv layers to obtain
the channel weights for both streams vi1, vi2 as follows:

p̄i = φ(ω1(pi)),

vi
1 = ω2(p̄i), vi2 = ω3(p̄i),

(4)

where, ω1, ω2, and ω3 are the convolutional weights, and φ
represents the ReLU activation function. Here, vi1 ∈ RCi×1,
and vi

2 ∈ RCi×1 refers to the un-normalized channels re-
weighting factors predicted for the pre- and post-change
features at stage i. These un-normalized weights are then
normalized by per-channel softmax across both streams. i.e,

v̂i1(j) =
exp(vi1(j))

exp(vi1(j)) + exp(vi2(j))

v̂i
2(j) =

exp(vi2(j))
exp(vi1(j)) + exp(vi2(j))

∀j = {1, ..., Ci}

(5)
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where, j is the channel index and exp denotes the exponential
function. These normalized weights v̂i

1 ∈ RCi×1 and v̂i
2 ∈

RCi×1 are used to perform channel re-weighting of F̂ i
pre and

F̂ i
post followed by feature fusion through addition to generate

the enhanced features F̂ i
enh as:

F̂ i
enh = v̂i1F̂

i
pre + v̂i2F̂

i
post, (6)

The resulting enhanced features from the CEFF module at
all stages are then resized to a fixed spatial resolution and
passed to the decoder that performs feature upsampling and
change map prediction.

Algorithm 1: Proposed algorithm to compute the
change map between the two inputs, pre- and post-
change images.

Data: Two co-registered images Ipre and Ipost
Result: Change map M

1 S ← stages = 4;
2 B ← blocks = [3, 3, 9, 3]
3 for j ∈ (pre, post) do
4 for i← 1 to S do
5 if i == 1 then
6 Iij ← Ij # Input at stage 1

7 else
8 Iij ← F̂ i−1

j # Input at stage > 1

9 t ← Downsampling(Iij)
10 repeat
11 # shuffled sparse attention (SSA)
12 ∆z ← Calculate offsets for t # get offsets
13 t̄← Get sparse sampled features using ∆z

(Eq. 1)
14 t̂← Compute self-attention on t̄ (Eq. 2)
15 t← t̂
16 until Bi;
17 F̂ i

j ← t

18 for i← 1 to S do
19 # Change enhanced features fusion (CEFF)
20 pi ← Compute global vector from (F̂ i

pre, F̂
i
post)

using Eq. 3
21 (v̂i

1, v̂i2)← Get normalized weights using pi (Eq. 4
and 5)

22 F̂ i
enh ← Compute enhanced features using Eq. 6

23 F all ← Concatenate(F̂ 1
enh, F̂

2
enh, F̂

3
enh, F̂

4
enh)

24 M← Decoder(F all)

V. EXPERIMENTS

A. Experimental Setup

Datasets: The large-scale LEVIR-CD [9]: dataset is for build-
ing change detection. It contains 637 high-resolution (0.5m per
pixel) image pairs taken from Google Earth with the size of
1024x1024. In our experiments, we use the non-overlapping
cropped patches of 256x256, having default data split of
train, validation, and test equal to 7120, 1024, and 2048,

respectively. The DSIFN-CD [7]: dataset is for binary change
detection and contains six high-resolution (2m) satellite image
pairs from six cities in China. We used the cropped version
of the dataset having image size of 256x256 resulting in train,
validation, and test sets of size 14400, 1360, and 28 image
pairs, respectively. The CDD-CD [24]: dataset comprises 11
seasonal varying image pairs including, 7 image pairs of size
4725x2700 pixels and 4 image pairs of size 1900x1000. The
image pairs are clipped into 256x256 with data split of 10000,
3000, and 3000 for train, validation, and test set, respectively.
The WHU-CD [23]: dataset is for building-related change
detection and consists of one high-resolution (0.075 m) image
pair of size 32507x15354 pixels. This aerial dataset contains a
variety of building architectures of different sizes and colors.
The dataset is also available with image pairs of size 256x256
pixels having non-overlapping regions and data split of 5947,
743, and 744 image pairs for train, validation, and test sets,
respectively. OSCD [25]: is a public change detection dataset
focusing on urban changes. It comprises of 24 image pairs of
Sentinel-2 multi-spectral data taken from the satellite and also
available in RGB format. These image pairs belong to different
locations in the world. The dataset focuses on construction
related changes and the resolution of image pairs is between
10m to 30m. We crop the RGB images to 256x256 size and use
the random rotation, and flipping augmentations to increase the
size of the dataset.
Evaluation Protocol: Following [10], we evaluate change
detection results in terms of change class F1-score, change
class Intersection over Union (IoU) and overall accuracy (OA)
on all the datasets. Among these evaluation metrics, the change
class IoU is the most challenging metric for the CD task.
Implementation Details: Our ScratchFormer takes a pair of
images of size 256 × 256 × 3 and computes the features for
the two streams at four stages (having 3, 3, 9, and 3 SSA
layers), which outputs the features with 64, 128, 320, and 512
channels, respectively. In the proposed SSA, the sparsity factor
is calculated as γ = 2n, where n > 0. The model is trained
using pixel-wise cross-entropy loss function. During training,
we employ standard data augmentations including, random
scale crop, Gaussian blur, random flip, and random color
jitter. We train our network using random initialization on 4
NVIDIA A100 GPUs. Following [10], we use the AdamW
optimizer with a weight decay 0.01 and beta values equal to
(0.9, 0.999). We set the batch size 16, initial learning rate to
4.1e-4, and train for 300 epochs. In our experiments, we used
linear decay to decrease the learning rate till the last epoch.
The binary change mask M is computed using a pixel-wise
argmax operation along the channel dimension.

B. State-of-the-art Comparison

Comparison on LEVIR-CD: Here, we present the state-of-
the-art comparison on the LEVIR-CD dataset (Tab. I). Among
recent transformer-based CD methods, H-TransCD [14], BIT
[16], ChangeFormer [10], and TransUNetCD [11] obtain IoU
scores of 81.92%, 80.68%, 82.48%, and 83.67%, respectively.
Our ScratchFormer obtains an IoU score of 84.63% with an
absolute gain of 2.15% and 0.96% over the recently published
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TABLE I
STATE-OF-THE-ART COMPARISON ON LEVIR-CD, WHU-CD, AND CDD-CD DATASETS. WE REPORT THE RESULTS IN TERMS OF F1, IOU, AND OA

METRICS. SCRATCHFORMER PERFORMS SIGNIFICANTLY BETTER AGAINST EXISTING METHODS AND ACHIEVES STATE-OF-THE-ART PERFORMANCE. THE
BEST TWO RESULTS ARE IN RED AND BLUE, RESPECTIVELY.

Method Input Resolution LEVIR-CD WHU-CD CDD-CD
F1 OA IoU F1 OA IoU F1 OA IoU

FC-EF [8] 256 x 256 83.40 98.39 71.53 69.37 97.61 53.11 66.93 93.28 50.30
FC-Siam-Diff [8] 256 x 256 86.31 98.67 75.92 58.81 95.63 41.66 70.61 94.95 54.57
FC-Siam-Conc [8] 256 x 256 83.69 98.49 71.96 66.63 97.04 49.95 75.11 94.95 60.14
DASNet [6] 256 x 256 79.91 94.32 66.54 70.50 97.29 54.41 92.70 98.20 86.39
DTCDSCN [47] 256 x 256 87.67 98.77 78.05 71.95 97.42 56.19 92.09 98.16 85.34
IFNet [7] 256 x 256 88.13 98.87 78.77 83.40 98.83 71.52 84.00 96.03 71.91
STANet [9] 256 x 256 87.30 98.66 77.40 82.32 98.52 69.95 84.12 96.13 72.22
MSTDSNet [12] 256 x 256 88.10 98.56 78.73 - - - - - -
H-TransCD [14] 256 x 256 90.60 99.00 81.92 - - - - - -
SNUNet [26] 256 x 256 88.16 98.82 78.83 83.50 98.71 71.67 83.40 96.23 72.11
BIT [16] 256 x 256 89.31 98.92 80.68 83.98 98.75 72.39 88.90 97.47 80.01
TransUNetCD [11] 256 x 256 91.11 - 83.67 93.59 - 84.42 97.17 - 94.50
ChangeFormer [10] 256 x 256 90.40 99.04 82.48 84.93 98.82 73.80 89.83 97.68 81.53
GeSANet [37] 256 x 256 90.05 99.01 81.90 63.02 96.20 46.00 95.14 98.83 90.73
ScratchFormer (ours) 256 x 256 91.68 99.16 84.63 91.87 99.37 84.97 97.88 99.50 95.85

TABLE II
COMPARISON OF PARAMETERS, INFERENCE TIME FOR SINGLE IMAGE PAIR, AND TRAIN TIME PER EPOCH WITH METHODS UTILIZING

TRANSFORMER-BASED BACKBONE ON LEVIR-CD.

Method Parameters (M) Input Resolution Train Time / Epoch (minutes) Inference Time (ms) IoU
Baseline 49.08 256 x 256 8.2 284 82.53
ChangeFormer [10] 41.03 256 x 256 8.1 249 82.48
ScratchFormer (ours) 36.95 256 x 256 7.9 268 84.63

Pre-change image Ground TruthScratchFormer (Ours)GeSANetBITPost-change image ChangeFormer

Fig. 6. Qualitative comparison on LEVIR-CD. We compare our ScratchFormer with BIT, GeSANet, and ChangeFormer. Our ScratchFormer provides improved
CD performance by accurately detecting the correct changes (marked in red box) with clear boundaries, compared to existing methods.

methods in literature ChangeFormer [10] and TransUNetCD
[11].

Comparison on WHU-CD: Here, we present the state-of-the-
art comparison on the WHU-CD dataset (Tab. I). Among ex-
isting transformer-based methods, BIT [16] and TransUNetCD
[11] achieve IoU scores of 72.39% and 84.42%, respectively.
In comparison, our ScratchFormer which is trained from
scratch through random initialization on this dataset achieves

favorable performance against existing methods with an IoU
score of 84.97%.

Comparison on CDD-CD: We also report results (Tab. I)
on the CDD-CD dataset. Among CNN-based approaches,
the DASNet [6] achieves IoU score of 86.39%. Among
transformer-based CD methods, TransUNetCD [11] achieves
an IoU score of 94.50%, which achieves this performance by
employing an improved ResNet50 backbone. In comparison,
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Pre-change image ScratchFormer (Ours)BIT ChangeFormerPost-change image Ground TruthGeSANet

Fig. 7. Qualitative comparison on WHU-CD. We compare our ScratchFormer with BIT, GeSANet, and ChangeFormer. It is notable that our ScratchFormer
provides improved CD performance by accurately detecting semantic changes with clear boundaries highlighted in red boxes.

Pre-change image ChangeFormer ScratchFormer (Ours)Post-change image Ground TruthBIT GeSANet

Fig. 8. Qualitative comparison on CDD-CD. We observe that our ScratchFormer better detects the semantic changes with clear boundaries between the pre-
and post-change images.

TABLE III
STATE-OF-THE-ART COMPARISON ON DSIFN-CD DATASET IN TERMS OF
F1, IOU, AND OA METRICS. FOR A FAIR COMPARISON, WE REPORT THE

RESULTS BASED ON THE PUBLICLY AVAILABLE CODES OF
STATE-OF-THE-ART METHODS. SCRATCHFORMER PERFORMS FAVORABLY

AGAINST EXISTING METHODS AND ACHIEVES STATE-OF-THE-ART
PERFORMANCE. THE BEST TWO RESULTS ARE IN RED AND BLUE,

RESPECTIVELY.

Method Input Resolution DSIFN-CD
F1 OA IoU

FC-Siam-Diff [8] 256 x 256 65.26 89.06 48.44
DTCDSCN [47] 256 x 256 65.29 88.14 48.46
BIT [16] 256 x 256 67.74 89.72 51.22
ChangeFormer [10] 256 x 256 69.50 90.56 53.26
GeSANet [37] 256 x 256 39.66 89.22 24.73
ScratchFormer (ours) 256 x 256 73.22 92.36 57.76

our ScratchFormer trained from scratch achieves an IoU score

of 95.85%.
Comparison on DSIFN-CD: We compare our approach
with both CNN-based and transformer-based state-of-the-art
methods over DSIFN-CD. Tab. III presents the results. We
observe that recent transformer-based methods achieve better
F1 score. For instance, BIT [16] and ChangeFormer [10]
achieve F1 scores of 67.74% and 69.50%, respectively. Our
ScratchFormer outperforms these recent methods and achieves
F1 score of 73.22%. Notably, ScratchFormer achieves absolute
gains of 3.72% and 4.5% in terms of F1 and IoU compared to
ChangeFormer [10]. It is worth mentioning that our approach
here is trained from scratch without using any pre-training on
another CD dataset. On this dataset, ScratchFormer sets a new
state-of-the-art performance with a significant gain obtained in
the challenging metrics.
Comparison on OSCD: Lastly, we present the results on
OSCD dataset in Tab. V. We reproduce the numbers for FC-
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Pre-change image Ground TruthScratchFormer (Ours)ChangeFormerBITPost-change image GeSANet

Fig. 9. Qualitative comparison on DSFIN-CD. We compare our ScratchFormer with BIT, GeSANet, and ChangeFormer. We observe our ScratchFormer to
better detect the semantic changes (marked in red box) with clear boundaries between the pre- and post-change images, compared to other methods.

29

104

Pre-change image ScratchFormer (Ours)BIT ChangeFormerPost-change image Ground TruthGeSANet

Fig. 10. Qualitative comparison on OSCD. We observe that our ScratchFormer better detects the semantic changes with clear boundaries between the pre-
and post-change images highlighted in red boxes.

Siam-Diff [8], DTCDSCN [47], BIT [16], and ChangeFormer
[10] Among the recent state-of-the-art methods, FC-Siam-Diff
[8] achieves the best F1-score of 56.01%. However, Scratch-
former being trained from scratch achieves a significantly
better F1-score of 57.37% compared to the FC-Siam-Diff and
sets new state-of-the-art results.
Comparison of Parameters and Time: We present the com-
parison of trainable parameters, the inference time for single
image pair, and the time required to train the model for a single
epoch of ScratchFormer with the other methods utilizing trans-
former based backbone. Tab. II shows that baseline has more
parameters and inference time, and its performance in terms
of IoU is inferior compared to the ScratchFormer. Besides,
ChangeFormer [10] has slightly lower inference time while its
trainable parameters and train time is higher compared to our
method. Although our method has a slightly longer inference
time, it has promising results in terms of all metrics, thereby

providing a better trade-off with respect to performance and
efficiency.
Qualitative Comparison: We present the qualitative com-
parison of our ScratchFormer with BIT [16], GeSANet [37],
and ChangeFormer [10] in Figures 6, 7 from LEVIR-CD [9]
and WHU-CD [23] examples, respectively. Figure 8 shows
the qualitative comparison of our ScratchFormer with the
transformer based methods [16], [10], [37] from CDD-CD [24]
examples. Moreover, Figures 9 and 10 show the qualitative
comparison of our ScratchFormer with BIT [16], GeSANet
[37], and ChangeFormer [10] from DSIFN-CD [7], and OSCD
[25] datasets, respectively. The results show that the proposed
ScratchFormer is able to detect semantic changes occurring
at multiple scales in complex scenes, enabling optimal CD
performance when being trained from scratch directly on
the target CD dataset. Furthermore, these qualitative analysis
demonstrate the efficacy of our proposed ScratchFormer uti-
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(a) Pre-change image (e) ScratchFormer (Ours)(c) Baseline (d) Baseline + SSA(b) Post-change image (g) Ground Truth

Fig. 11. Qualitative ablation study on LEVIR-CD. We compare our final ScratchFormer (e) which includes both contributions (SSA and CEFF). The
change detection performance of baseline and SSA introduced to baseline is shown in (c) and (d), respectively. Our ScratchFormer (e) provides improved CD
performance by accurately detecting the correct changes (marked in red box) with clear boundaries, demonstrating the effectiveness of our contributions.

TABLE IV
ABLATION STUDY ON THE LEVIR-CD DATASET. HERE, WE SHOW THE

IMPACT OF INTEGRATING OUR CONTRIBUTIONS TO THE BASELINE. †
DENOTES THAT THE MODEL IS PRE-TRAINED FIRST ON ANOTHER CD
DATASET AND THEN FINETUNED ON THE TARGET CD DATASET. THE

INTEGRATION OF OUR SSA (ROW 5) INTO THE BASELINE (ROW 4) LEADS
TO CONSISTENT GAIN IN PERFORMANCE. OUR FINAL APPROACH

SCRATCHFORMER (ROW 6) WHICH COMPRISES BOTH SSA AND CEFF
ACHIEVES A SIGNIFICANT IMPROVEMENT IN PERFORMANCE OVER THE

BASELINE. HERE, WE ALSO REPORT CHANGEFORMER WITH AND
WITHOUT PRE-TRAINING. THE BEST TWO RESULTS ARE IN RED AND

BLUE, RESPECTIVELY.

Method LEVIR-CD
F1 OA IoU

ChangeFormer [10] † 90.40 99.04 82.48
ChangeFormer [10] 84.97 98.52 73.86
Baseline † 90.65 99.06 82.89
Baseline 90.43 99.05 82.53
Baseline + SSA (Sec. IV-C) 91.08 99.09 83.62
Baseline + SSA+ CEFF (ScratchFormer) 91.68 99.16 84.63

lizing novel shuffled sparse attention which focuses on sparse
informative regions to capture the inherent characteristics of
the CD data.

C. Ablation Study

Here, we present ablation study to validate the effectiveness
of our contributions over LEVIR-CD dataset. Tab. IV shows
the baseline comparison. The baseline approach (Sec. III-A)
when trained from scratch using random initialization achieves
IoU score of 82.53% (row 4) over LEVIR-CD dataset. The
results of the baseline approach are improved to 82.89% (row
3) when first pre-training it on DSIFN-CD and then finetuning
it on the LEVIR-CD (target) dataset. When integrating our
SSA layer (Sec. IV-C) into the baseline, the results are

TABLE V
FOR A FAIR COMPARISON, WE PROVIDE A STATE-OF-THE-ART

COMPARISON OF OSCD DATASET. WE REPORT THE RESULTS IN TERMS OF
F1, IOU, AND OA METRICS. SCRATCHFORMER PERFORMS

SIGNIFICANTLY BETTER AGAINST EXISTING METHODS AND ACHIEVES
STATE-OF-THE-ART PERFORMANCE. THE BEST TWO RESULTS ARE IN RED

AND BLUE, RESPECTIVELY.

Method Input Resolution OSCD
F1 OA IoU

FC-Siam-Diff [8] 256 x 256 56.01 96.69 38.90
DTCDSCN [47] 256 x 256 43.57 97.13 27.85
BIT [16] 256 x 256 48.97 96.50 32.42
ChangeFormer [10] 256 x 256 49.23 94.93 32.65
GeSANet [37] 256 x 256 35.99 97.12 21.94
ScratchFormer (ours) 256 x 256 57.37 97.33 40.22

improved to 83.62% in terms of IoU score (row 5). Our
final ScratchFormer which includes both contributions (SSA
and CEFF) and trained from scratch leads to a significant
improvement in performance by achieving an IoU score of
84.63%. These results demonstrate the effectiveness of our
contributions. In addition to the baseline comparison, we also
report the results of ChangeFormer using both pre-training and
training from scratch. Our ScratchFormer achieves consistent
gain in performance on all three metrics over the Change-
Former.

We further perform an experiment to compare our CEFF
module with standard addition, subtraction, and concatenation
based techniques. Here, addition, subtraction, and concate-
nation are performed for F̂ i

pre and F̂ i
post, and passed to

two convolutional layers. Tab. VII shows the comparison.
Our CEFF that utilizes feature channel re-weighting achieves
superior performance compared to these techniques.
Shuffled Sparse Features: The calculation method to predict
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TABLE VI
COMPARISON OF THE SPARSITY γ OVER LEVIR-CD DATASET. THE

SPARSITY γ = 4 ACHIEVES SUPERIOR PERFORMANCE. THE BEST RESULTS
ARE IN BOLD.

γ
LEVIR-CD

F1 OA IoU
γ=2 91.49 99.14 84.32
γ=4 91.68 99.16 84.63
γ=8 91.56 99.15 84.44

TABLE VII
COMPARISON OF CEFF WITH THE SUBTRACTION, ADDITION, AND

CONCATENATION-BASED TECHNIQUES ON LEVIR-CD. CEFF ACHIEVES
SUPERIOR PERFORMANCE ON ALL METRICS. THE BEST TWO RESULTS ARE

IN RED AND BLUE, RESPECTIVELY.

Method LEVIR-CD
F1 OA IoU

Difference module with Subtraction 90.74 99.07 83.05
Difference module with Addition 91.02 99.10 83.52
Difference module with Concatenation 91.08 99.09 83.62
CEFF 91.68 99.16 84.63

the offsets is adapted from deformable convolutional network
[45]. Our approach then employs sparse sub-sampling instead
of a dense sub-sampling. We empirically observe our approach
to achieve superior performance, compared to using a dense
sub-sampling with shuffled locations using the computed off-
sets (Our approach: 84.63% vs. dense sub-sampling: 83.37%
on LEVIR-CD in terms of IoU score). We further conjecture
this improvement to be likely due to effectively learning a
rich feature representations by attending to sparse informative
regions in remote sensing CD images. In contrast, the dense
sub-sampling on uniformly sampled dense patches is likely to
have difficulties to learn a rich feature representation encoding
diverse shape objects with inconsistent appearance in remote
sensing scenes having sparse informative regions.
Sparsity Factor: We also conduct an experiment to estimate
the optimal sparsity of our SSA by varying the sparsity factor
γ (2, 4, and 8) as shown in Table VI. We observe setting the
value of γ to 4 to provide optimal performance for LEVIR-
CD dataset. Therefore, we fix the γ and use the same value
throughout our experiments.

VI. CONCLUSION

We propose a transformers-based Siamese architecture,
named ScratchFormer, for the problem of remote sensing
change detection. Our ScratchFormer introduces shuffled
sparse attention to effectively capture the inherent charac-
teristics when training from scratch. We further introduce
a change-enhanced feature fusion module to perform per-
channel feature weighting to enhance the relevant semantic
changes, while suppressing the noisy ones. We validate our
approach by conducting extensive experiments on multiple
commonly used change detection benchmarks with different
set of challenges. For instance, LEVIR-CD and WHU-CD
datasets present different challenges such as building shadows,
color variations, vegetation changes, and various types of
buildings having irregular shapes and sizes, whereas the CDD-
CD dataset poses challenges in terms of accurate boundary

delineation likely due to different factors including, image res-
olution, sensor limitations, and the nature of the changes due to
season-varying image acquisition. Our approach performs fa-
vorably against existing change detection methods on all these
datasets. A potential future research direction is to further
explore accurate boundary delineation particularly in scenarios
with season-varying images along with the generalizability
of the transformers-based remote sensing change detection
at provincial-scale [48], [49]. Another future direction is to
investigate the problem of change detection in natural images
and medical imaging.
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