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a b s t r a c t

Deep learning-based object detection is a fundamental but challenging problem in computer vision field,
has attracted a lot of study in recent years. State-of-the-art object detection methods rely on the selection
of positive samples and negative samples, i.e., called sample assignment, and the definition of a useful set
for training, i.e., called sample sampling heuristics. This paper presents a comprehensive review of the
advanced anchor assignment and sampling approaches in deep learning-based object detection. Each
problem is classified and analyzed systematically. According to the problem-based taxonomy, we identify
the advantages and disadvantages of each problem in-depth and present open issues regarding the cur-
rent methods. Furthermore, this paper also reviews the new trends in solving object detection that has
not been discussed during the last two years. To track the latest research, a webpage related to the above
problems is provided, which is available at https://github.com/VoXuanThuy/ObjectDetectionReview.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Object detection served as a primary process for high-level
tasks such as multiple object tracking [1–6], skeleton-based action
detection [7,8], action detection [9,10], person search [11–13],
facial landmarks detection [14], and human pose estimation [15–
17], has been widely used in many real-world applications, e.g.,
video surveillance systems [18–21], autonomous vehicles [22–
25], and vision robotics [26–30]. The aim of object detection is to
identify what objects are presented in an image from pre-defined
categories such as person, car, zebra, etc., and determine where
objects are located through rectangular bounding boxes (spatial
location).

The first generation of the object detector were solved by tradi-
tional machine learning techniques with representative methods
such as dimensionality reduction [31–33], principal component
analysis [34], improved ensemble systems [35], linear discriminant
analysis [36–39], optimization [40–43], constrained learning algo-
rithms [44–46], hybrid learning methods [47], and shallow neural
networks [48–52]. These techniques heavily rely on hand-crafted
features and linear classifiers. The popular approaches in this gen-
eration are the Histogram of Oriented Gradients (HOG) [53], and
Deformable Part Model (DPM) [54]. HOG is a feature descriptor
that computes local intensity histograms of gradient orientation
in a dense grid of image cells to enhance the scale-invariant feature
transform descriptors [55,56], and shape matching [57]. DPM
extends HOG orientation histograms, improving detection perfor-
mance by introducing discriminative training (mining hard nega-
tive samples during training) and multi-scale deformable parts.
As the limitation of hand-crafted features, the performance of
object detection became saturated during 2010–2012. After Alex-
Net [58] proposed the dominant work in 2012, the revolution of
deep convolutional neural networks has started to solve complex
problems in computer vision, and object detection also has been
dominated. The current generation leverages the object detection
model to be effective and efficient via Convolutional Neural Net-
works (CNNs). This innovative technology has brought remarkable
improvement in terms of accuracy and computational cost. Specif-
ically, the state-of-the-art detectors based CNNs achieved approx-
imately 0.89 mAP (mean Average Precision) on the benchmark
dataset PASCAL VOC while DPM-based hand-crafted features only
achieved 0.34 mAP.

In recent years, deep learning-based object detection (deep
object detection) has been dominated by anchor-based detectors
or anchor-free detectors, predicting the classification scores and
regression offsets for the set of anchors (candidate boxes). To train
the detection model, we should define the classification and
regression targets for each anchor. This is called anchor assignment
in deep object detection. In this paradigm, anchors are assigned as
positive or negative samples according to a certain criterion. Since
object detection performance is sensitive to the definition of posi-
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tive and negative samples, many studies invest much effort into
advanced algorithmic approaches. In nature, most anchor boxes
are labeled as negative samples (background class) because several
spatial locations in each image contain objects. It leads to an imbal-
ance problem between negative and positive samples in object
detection. When not figured out, the model heavily pays attention
to negative samples. This problem directly degrades the final
detection performance. The critical solution is to select a subset
of negative and positive samples to train detectors efficiently. This
procedure is called sampling heuristics in object detection. In recent
years, the object detection community has addressed this problem
in many aspects.

In this paper, we describe deep learning-based object detection
in terms of anchor assignment, sampling heuristics, and recent
trends of the object detection in systematic manners. Three com-
ponents are identified and classified in the problem-based taxon-
omy to study the problem and the solution. The systematic
taxonomy associated with the list of the existing papers for each
problem is shown in Fig. 1, based on its goal, solutions, and struc-
tural networks.
1.1. Comparison with previous reviews

In recent years, many detailed deep object detection reviews
based on a taxonomy have been presented in [59–62]. These
reviews described the milestone object detection, benchmark data-
sets and metrics, detection frameworks, feature extractors, main
blocks in detectors, and state-of-the-art methods from the 1990s
to 2019. Zhao et al. [63] proposed a review for object detection
approaches that treat challenging problems such as occlusion, clut-
ter, and feature scales in RCNN [64] and its variants. Oksuz et al.
[65] analyzed imbalance problems in object detection and pro-
posed open research issues for each problem. These problems are
categorized into four groups: foreground-background or
foreground-foreground imbalance, object scale imbalance, spatial
Fig. 1. The problem-based taxonomy of the deep-learning based object detection relate
methods.
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bounding box imbalance, and objective imbalance due to multi-
task learning. Unlike existing surveys, we classify state-of-the-art
detectors according to anchor assignment and sample sampling
components and provide detailed analysis for each classified
method. To the best of our knowledge, there is no prior method
discussing these two problems in object detection literature.

Some surveys provided the summarized literature for specific
object detection, such as vehicle detection [66,67], face detection
[68,69], and pedestrian detection [70–72]. Dollar et al. [70], Cao
et al. [71], and Hosang et al. [72] present an in-depth analysis of
feature extractors from hand-crafted features to deep learning.
Cao et al. [71], and Hosang et al. [72] further discuss some prob-
lems in pedestrian detection such as occlusion, scale variance,
and domain adaptation. These surveys concentrate on the specific
class and do not analyze the core components related to the input
property of generic object objection.
1.2. Scope

The main purpose of this paper is to provide a comprehensive
review of anchor assignment, sampling heuristics in CNN-based
object detection and Transformer-based object detection, and pre-
sent a problem-based taxonomy in a high-level view and state-of-
the-art detectors in the last two years. Our review analyzes the
advantages and disadvantages of each method, the similarities
and differences between a problem-based taxonomy. We hope
readers can understand current research from a general perspec-
tive and identify open research issues in the future.

Reviewing the generic object detection in cornerstone is out of
the scope of this paper. We only introduce basic knowledge on
widespread object detection to make researchers familiar with
the concept of object detection and its components. To explore
the milestone object detection, we defer to the recent surveys
[59–61,63] the detailed knowledge of the detection frameworks.

The main contributions are summarized as follows:
d to anchor assignment, sampling heuristics, and recent trends in object detection
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1. A detailed literature review for the existing methods about
anchor assignment and sample sampling is investigated and
analyzed in a taxonomy. We identify a definition of each com-
ponent, challenging problems in existing methods and their
solution, and a comprehensive comparison of all methods.

2. Open research direction in both anchor assignment and sam-
pling heuristics is discussed.

3. We review the state-of-the-art object detection in the last two
years that complement recent surveys [59–61,63]. We also pro-
vide paper literature related to the above problems via the
repository webpage.

In the following, we introduce an overview architecture and
crucial components for deep learning-based object detection in
Section 2. A comprehensive review of anchor assignment and sam-
pling methods is discussed and analyzed in Section 3 and 4, respec-
tively. Section 5 provides new trends in solving deep learning-
based object detection based on vision Transformer. Moreover,
we list future potential research directions with respect to the
problem-based taxonomy in Section 6. The overview flowchart of
the paper is sketched in Fig. 2.
2. Preliminary on object detection

2.1. Categories of the object detection method

In this subsection, we briefly describe all components in object
detection and types of object detection. Based on prior knowledge
(anchor generation, regression variables), there are two types of
object detection: anchor-based object detection and anchor-free
object detection.

2.1.1. Anchor-based object detection
Many advanced detectors have been dominated by anchor-

based methods categorized into two groups: two-stage object
detection and one-stage object detection. Two-stage object detec-
tion. The family of RCNN [64,73,74] has been pioneering works in
two-stage anchor-based methods. RCNN applies a selective search
algorithm [75] for generating many region proposals (about 2000
region proposals for each image). Then, the region-wise CNNs
extract features and classify each region proposal using SVM.
Instead of forwarding the region proposals to CNNs, Fast R-CNN
directly feeds the input image to the CNN to create the feature
map. Then, they generate the region proposals from the feature
map using selective search and reshape them into a fixed size
(7� 7) utilizing the RoI pooling layer. The classification scores
and regressed bounding box for each proposal are predicted
through stacked fully connected layers from pooled features.
Although Fast R-CNN reduces training and testing time, region pro-
posals generated by the selective search are a matter in Fast R-CNN
architecture since selective search is a slow and time-consuming
Fig. 2. The organizat
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step. To overcome this problem, Faster R-CNN introduces an anchor
generation mechanism to create dense anchor boxes (prior bound-
ing boxes). In general ways, multiple anchors of different scales
and aspect ratios are placed to each feature map location to
encompass all objects with various sizes and shapes. Faster R-
CNN includes two stages: Region Proposal Network (RPN) and
region-wise RCNN. In the first stage, RPN uses two CNN sub-
networks to predict objectness scores and regressed offsets from
the set of anchor boxes. The main goal of RPN is to reduce the num-
ber of negative samples by eliminating low-quality bounding
boxes via Non-Maximum Suppression (NMS), i.e., the suppressed
boxes have low objectness scores. To train RPN, anchor boxes are
separated into two sets: a set of negative samples and a set of pos-
itive samples. The bounding box regression only refines bounding
boxes of positive samples. In the second stage, the RCNN network
further processes filtered bounding boxes in RPN to get final detec-
tion results in which RoI/RoIAlign is used to crop refined bounding
boxes before feeding to classification and regression networks.
Inspired by Faster R-CNN, many improved object detection meth-
ods are proposed such as network design [76–83], attention blocks
[84–90], training loss and sampling heuristics [91,92,90,93,94]. In
recent years, object detectors have achieved state-of-the-art per-
formances based on two-stage methods on challenging benchmark
datasets such as MS-COCO [95], Pascal VOC [96].

One-stage object detection. Without RPN, one-stage detectors
directly predict object classification scores and regression offsets at
each spatial location from assigned dense anchor boxes, which bal-
ances accuracy and speed. The representative methods of one-
stage detectors are SSD [97] and its variants [98–101], YOLO family
[102–106], and RetinaNet [107]. SSD places anchor boxes on mul-
tiple feature map with different scale and then, directly predicts
object categories and box offsets. RetinaNet improves the one-
stage network in many aspects, such as applying a feature pyramid
[108] for solving scale imbalance in which anchor boxes are den-
sely tiled on each feature map; proposing Focal loss to handle fore-
ground/background imbalance; and designing classification and
regression sub-networks. Nowadays, one-stage object detectors
achieve similar performance with two-stage methods but higher
testing speed than two-stage detectors.
2.1.2. Anchor-free object detection
Recently, many researchers have great attention to anchor-free

methods due to their high efficiency and flexibility. Anchor-free
object detections directly output object categories and bounding
box regression without designing anchor boxes. It is split into
two groups: key-point based object detection and center-based
object detection.

Key-point based object detection. Key-point methods locate
bounding boxes by predicting important key-points, e.g., a pair of
top-left and bottom-right corners [109], center points [110], key-
point triplets [111], and extreme points [112] on objects. And then,
ion of the paper.
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these methods group learned key points to generate the final box
by employing associative embedding [113]. RepPoints [114] form
bounding boxes as a set of sample points and then learn and
arrange representative points accordingly. Although key-point
methods achieve on-par results with anchor-based methods, they
require longer training to converge the model.

Center-based object detection. Center-based methods con-
sider the center point or center region of the object as a strict cri-
terion to define positive and negative samples. During training,
these methods regress the distance offsets from positive samples
to four sides of the object boundary. YOLO [102] separates the
input image into an S� S grid. If the center of an object belongs
to a grid cell, that grid cell is used to detect that object. GA-RPN
[115] determines the pixels inside the center region of a ground
truth box as positive samples and then predicts the anchor location
and shape. FSAF [116] defines the center region of an object as pos-
itive according to the prediction of the anchor-free branch with a
feature selection module integrated into the detection head. Fovea-
Box [117] defines the region inside the middle part of an object as a
positive area and then predicts four distance offsets from each cell
inside the positive area to the object boundary. FCOS [118] consid-
ers anchor boxes as anchor points, eliminating hyperparameter
selections of anchor boxes such as how many anchor boxes are
tiled per spatial location, scale, and aspect ratio. If an anchor point
falls into the object region, this point is assigned as a positive sam-
ple and utilized to regress distance offsets from this point to each
side of the object boundary.

2.2. General pipeline

The goal of object detection is to solve multi-task learning
including classification and localization tasks. The common pipe-
line of the object detection network is illustrated in Fig. 3, which
has two components: detection model and anchor assignment/
sampling. The detection model consists of:

� Backbone Part. Given the input image I 2 RH�W�3, the backbone
network extracts informative features through the popular
CNNs such as VGG [119], ResNet [120], MobileNet [121], where
H;W are height and width of the image spatial dimension.

� Neck Part. This network constructs multi-level feature maps
with different scales to solve scale imbalance in detection.
There are many methods to improve the neck parts such as
FPN [108], PANet [122], Libra FPN [90], NAS-FCOS [118], NAS-
FPN [123].
Fig. 3. The common pipeline of the general object detection network. The pipeline includ
indicates classification loss. Lloc denotes localization loss.
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� Classification and Localization Parts. These parts are called
detection head, which uses extra convolutional layers to output
object categories and offsets for each assigned anchor.

The anchor assignment and sampling include:

� Anchor Box Set: A - The set of anchor boxes stands for a set of
pre-defined bounding boxes (prior boxes) and ai 2 A is one
anchor box. In most detection methods, multiple anchor boxes
with different scales and aspect ratios are placed on each spatial
location of the feature map to cover various objects in the image
I. Fig. 4 illustrates anchor generator on the pyramid level i with
different scales and aspect ratio. In the prevalent detector Reti-
naNet [107], and RPN in Faster R-CNN [74], the areas of the base
anchor boxes are set to f82;162;322;642;1282g corresponding
to the feature level from P3-P7. On each location of the feature
level Pi 2 fP3; P4; P5; P6; P7g, they place anchor boxes with three

scales f20;21=3;22=3g and three aspect ratios f1 : 1;2 : 1;1 : 2g .
Accordingly, there are 9 anchor boxes per feature location. In
total, there are Hi �Wi � 9 anchor boxes for one feature map
where Hi;Wi are height and width of the feature level i,
respectively.

� Ground Truth Set: G - It is a set of ground truth bounding boxes
and class labels. Each element of this set is tuple ðgj; ljÞ where

gj 2 R4 indicates one ground truth box with four coordinates

and lj 2 RC is the enumeration of the pre-defined number of
classes C in datasets.

� Model’s Feedback. The learning status of classification and
localization subnetworks is used as matching cost to perform
the anchor assignment task.

� Anchor Assignment. The anchor box set is assigned to a set of
positive samples and a set of negative samples.

� Sampling Heuristics. This procedure is to select a subset from
the assigned set of anchor boxes.

� Positive sample set - P. The assigned and sampled anchor
boxes inside the positive set are close to the ground truth box
location.

� Negative sample set - N. The classification subnetwork is
designed to classify this set as a background class. And, this
set is not joined in performing the localization task.

3. Anchor assignment

Assigning the anchor boxes into the positive and negative sets is
necessary processing before training detectors, which directly
es two main components: Detection model and Anchor assignment & sampling.Lcls



Fig. 4. Anchor box generator on the feature map with level i. The base anchor box has an area of 2i .
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affects the detection performance. In detection literature, anchor
assignment is grouped into two: (i) hard assignment methods
and (ii) soft assignment methods. The difference between hard
and soft assignment methods relies on the input variables of the
desired algorithm to separate the anchor set into positive and neg-
ative sets according to different criteria. Hard methods compute
the localization cost from the ground truth and anchor sets to per-
form the assignment based on hard criteria (pre-defined thresh-
olds). Soft methods automatically separate positive and negative
samples for a ground truth box according to the model’s feedback
during training without assuming any threshold. The matching
cost of the soft assignment methods is computed by linearly com-
bining classification and localization costs where signals are taken
from learning status. This strategy produces richer semantic infor-
mation for the assignment while hard methods only consider local-
ization cost that ignores the context of objects and treat positive
and negative separations independently. We summarize the key
procedure and comparative performance of hard and soft
assignment methods in Table 1 and Table 2, respectively. Here,
FPN indicates Feature Pyramid Network [108], DE means Dilated
Encoder [124], and 1� denotes 12 epochs configured during
training.

3.1. Hard assignment methods

The hard assignment is a widely-used method in object detec-
tion. Most anchor-based detectors usually use an IoU-based
method that computes the IoU (Intersection of Union) between
anchor set A from different pyramid levels and ground truth box
set G. For each gj 2 G, these detectors define a hard IoU threshold
to separate positive and negative samples as follows:

lij ¼
1 if IoUðai; gjÞ P tp
0 if IoUðai; gjÞ < tn
�1 otherwise;

8><
>: ð1Þ

where tp; tn are IoU thresholds to define positive and negative sam-
ples for a ground truth box gj, respectively. If IoUðai; gjÞ is larger
than tp, this anchor box is assigned as positive sample ai 2 P and
labeled as lij ¼ 1 during training. An anchor is assigned as negative
sample ai 2 N if IoUðai; gjÞ is less than tn, labeled as lij ¼ 0. Other-
wise, an anchor is unassigned if IoUðai; gjÞ 2 ½tn; tpÞ and it is ignored
during training. The reason for the unassigned anchors with
IoUðai; gjÞ 2 ½tn; tpÞ is to make the separation boundary between a
set of positive samples and a set of negative samples more clear
and avoid ambiguous learning originating from uncertainty prob-
lems such as occlusion, ambiguities, blur, shadow, and complex
scenes. These unassigned anchors are called hard samples that gen-
100
erate high loss during training. If these anchors are used during
training, object’s coordinates and categories are not clear enough
because of uncertainty. Therefore, existing detectors ambiguously
identify the exact object locations and classes from the assigned
anchors. As a result, detectors yield mislocalized and misclassified
bounding boxes. Although the models predict high probability
scores for the classification task, the box predictions do not satisfy
high accuracy requirement. Therefore, it directly affects the overall
performance. RetinaNet [107] sets tp ¼ 0:5 and tn ¼ 0:4 for training
detection model. Fig. 5(a) shows the definition of positive samples
and negative samples in RetinaNet detector. RPN in Faster R-CNN
[74] adopts tp ¼ 0:7 and tn ¼ 0:3 as assigning criterion. In literature,
the IoU-based method is the simple but effective strategy, applied
to many detectors such as two-stage detectors [74,79,108,125–
135] and one-stage detectors [97,103,104,107,136–139]. Even
though IoU-based anchor assignment achieves significant improve-
ments, they has limitations:

� For slender objects, objects with irregular shapes, occluded
objects, and ambiguous objects, the anchors assigned as posi-
tive samples contain the noisy background (noisy anchors),
ambiguous information for learning. Moreover, anchors with
small IoU scores contain informative features for classifying
and localizing objects. These factors bring harmful gradients
to detection models, i.e., ambiguous learning (hard to learn
and generate large losses during training).

� Scale imbalance on positive anchors is identified. This imbal-
ance originates from the number of positive samples assigned
for large ground truth boxes. In the natural, large ground truth
boxes produce more positive samples than small boxes. As
shown in Fig. 5(a), the number of positive samples assigned
for larger sheep is more than smaller sheep. Therefore, the
model focuses too much on large ground truth boxes, neglecting
small ground truth boxes. It decreases the detection
performance.

� There is an inconsistency between the IoU-based method and
network optimization. Detectors optimize classification and
localization objectives simultaneously, while the IoU-based
method only uses localization quality (IoU score) to perform
the assignment. It leads to insufficient information when select-
ing positive samples.

� Separating positive/negative samples lacks context, and it leads
to improper detection.

� The detection performance is sensitive to threshold tp and tn.

The above problems cause sub-optimal assigning results in IoU-
based methods and open research directions for improving anchor
assignment.



Table 1
The comparison of hard anchor assignment and soft anchor assignment between different object detectors in theoretical analysis and performance on MS-COCO dataset.

Method Prior
Anchor

Positive Bag Construction Cost metric Re-assignment Addit.

Hard Anchor Assignment
RetinaNet [107] Anchor box IoUðai; gjÞ P 0:5 spatial IoU, scale – –
FCOS [118] Anchor

point
Inside GT boxes (center prior) spatial center,

scale
– r ¼ 1:5

ATSS [140] Anchor box,
anchor
point

Top-k = 9 anchor boxes, its
centers
are closest to ground truth
center

spatial IoU, scale Assuming IoU scores as Gaussian distribution.
Setting new assignment threshold: mean + standard deviation.

–

YOLOF [124] Anchor box Top-k = 4 nearest anchor boxes L1 localization
cost

– –

Soft Anchor Assignment

FreeAnchor
[148]

Anchor box Top-k IoU anchor boxes classification and
localization loss

Maximizing detection customized likelihood.
(learn to match positive and negative anchors).

–

NoisyAnchor
[149]

Anchor box Top-k IoU anchor boxes cleanliness score Using cleanliness scores as soft labels. –

MAL [150] Anchor box Top-k IoU anchor boxes classification and
localization loss

All-to-Top-1 selection strategy during learning. –

AutoAssign
[152]

Center
weighting

Inside GT boxes (center prior) classification and
localization loss

Confidence weighting reshapes the negative and positive
weighting.

–

PAA [151] Anchor box IoU > 0:1 classification and
localization loss

Computing anchor scores. Selecting top-k = 9 smallest scores.
Finding two Gaussian via Fitting GMM to top-k scores.
Middle of positive anchor distribution as the separation
boundary.

k ¼ 1:3

DETR [156] Object
query

All queries classification and
localization cost

One-to-one assignment using Hungarian algorithm. kL1 ¼ 5
kIoU ¼ 2

POTO [153] Anchor
point

Inside GT boxes (center prior) classification and
localization score

One-to-one assignment using Hungarian algorithm.
Applying auxiliary one-to-many assignment of ATSS.
(For computing auxiliary loss).

a ¼ 0:8

LLA [162] Anchor box,
Anchor
point

All anchor boxes All anchor
points

classification and
localization cost

Selecting top-k = 10 minimum cost. k ¼ 1:5

C ¼ 102

OTA [154] Anchor box,
Anchor
point

Top-r = 5 anchors whose centers
are closest to object center

classification and
localization cost,
center prior

Computing optimal assigning plan via Sinkhorn-Knopp Iteration.
Dynamic k estimation.

a ¼ 1:5

YOLOX [124] Anchor
point

Inside GT boxes (center prior) classification and
localization cost

Selecting top-k minimum cost. Dynamic k estimation. r ¼ 2:5
k ¼ 3:0

Musu [163] Anchor
point

Quality scores P t classification and
localization score

Mutually learning with the sampling method h ¼ 4:0
b ¼ 0:1
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FCOS [118] considers anchor box ai as anchor point. The anchor
point ai is assigned as a positive sample if it satisfies two condi-
tions: spatial constraint and scale constraint. Specifically, if anchor
point ai: (1) falls into the center region of ground truth box gj and
(2) belongs to the regression range defined for each pyramid level,
this point is assigned as a positive sample. Anchor points that do
not satisfy two conditions are labeled as negative samples. Fig. 5
(b) shows how to define positive and negative samples in FCOS
based on spatial and scale constraints. As a result, FCOS produces
many positive samples for each object and thus brings sufficient
information of ground truth boxes to efficiently train the bounding
box regressor. Although FCOS achieves better performance than
RetinaNet, it does not take all problems of hard assignment into
account.

ATSS [140] proposes adaptive training sample selection that
automatically assigns positive and negative samples based on a
statistical distribution of the object. For a ground truth box gj,
the procedure is briefly computed as:

1. Compute IoUðai; gjÞ for all anchors.
2. Compute the center distance between all anchors and the

ground truth using L2 distance.
3. On each pyramid level, select k anchor boxes whose centers are

closest to the ground truth center.
4. Get corresponding IoU for these anchor candidates, and com-

pute the mean and standard deviation.
5. IoU threshold tp is the sum of the mean and standard deviation.
101
6. Assign ai as positive if IoUðai; gjÞ P tp.

Adaptive training sample selection is demonstrated effective
and has been used by many recent state-of-the-art one-stage
detectors such as [141–146]. Although ATSS overcomes the limita-
tion of the hard IoU threshold and improves the detection perfor-
mance, it still lacks classification cost and feature context. And
computing mean and standard deviation based on normal distribu-
tion do not satisfy the arbitrary distribution of real datasets [147].

YOLOF [124] introduces Uniform Matching to solve scale imbal-
ance on positive samples originated by large ground truth bound-
ing boxes. Uniform Matching is described as:

1. Compute the L1 cost between anchor boxes and ground truth
boxes.

2. Select k nearest anchors as positive samples for each ground
truth box according to L1 cost.

3. Ignore large IoU > 0:7 negative anchors and small IoU < 0:15
positive anchors.

This strategy makes the number of positive samples uniform for
all ground truth boxes. Hence, small and large ground truth
boxes all join during training and contribute equally. However,
Uniform Matching only considers the localization cost. It still
produces noisy and ambiguous anchors due to lack of
classification cost and model’s feedback, and hinders the
optimization.



Table 2
Comparative performance between existing object detectors on the benchmark MS-COCO dataset.

Method Backbone Schedule AP AP50 AP75 APS APM APL

Hard Anchor Assignment
RetinaNet [107] ResNet-50-FPN 1� 36.5 55.4 39.1 20.4 40.3 48.1
FCOS [118] ResNet-50-FPN 1� 38.7 57.4 41.8 22.9 42.5 50.1
ATSS [140] ResNet-50-FPN 1� 39.4 57.6 42.8 23.6 42.9 50.3
YOLOF [124] ResNet-50-DE 1� 37.5 57.0 40.4 19.0 42.0 53.2

Soft Anchor Assignment
FreeAnchor [148] ResNet-50-FPN 1� 38.7 57.3 41.5 21.0 42.0 51.3
NoisyAnchor [149] ResNet-50-FPN 1� 38.0 56.9 40.6 – – –
MAL [150] ResNet-50-FPN 1� 39.2 58.0 42.3 – – –
AutoAssign [152] ResNet-50-FPN 1� 40.4 59.6 43.7 22.7 44.1 52.9
PAA [151] ResNet-50-FPN 1� 40.4 58.4 43.9 22.9 44.3 54.0
DETR [156] ResNet-50-FPN 12� 40.1 60.6 42.0 18.3 43.3 59.5
POTO [153] ResNet-50-FPN 3� 41.4 60.1 44.9 25.6 44.9 53.1
OTA [154] ResNet-50-FPN 1� 40.7 58.6 44.1 – – –
Musu [163] ResNet-50-FPN 1� 40.6 58.9 44.3 23.0 44.0 54.2

Fig. 5. (a) Retinanet [107] uses IoU-based anchor assignment to separate anchor boxes from two feature pyramid levels into positive and negative samples. (b) FCOS [118]
utilizes two constraints (spatial and scale constraints) to divide anchor points from pyramid level 1 and 2. Blue boxes denote anchor boxes, and pink points indicate anchor
points. Red and blue boxes denote ground truth bounding boxes. Positive samples are labeled as 1. Negative samples are labeled as value 0.
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3.2. Soft assignment methods

In recent years, state-of-the-art detectors tried to improve
anchor assignment to be more adaptive instead of hard IoU thresh-
old and generate the best assignment results according to detec-
tion prediction and additional network optimization. These
detectors take noisy anchors and ambiguous anchors into consid-
eration, and the detection model needs to participate in anchor
assignment. Fig. 6 illustrates the general computation of soft
anchor assignment methods.

FreeAnchor [148] trains the detector using Maximum Likeli-
hood Estimation (MLE), where detection customized likelihood is
proposed to unify the classification and localization. Positive sam-
ples are determined by maximizing the likelihood via updating the
IoU-based method and learning-to-match method, as follows:

1. For each ground truth, an anchor bag is constructed by selecting
topK anchor boxes based on IoU between anchor boxes and the
ground truth.

2. Maximizing detection customized likelihood corresponds to
minimizing anchor matching loss, i.e., learn to match positive
and negative anchors from anchor bag, to find the suitable pos-
itive anchors automatically.

However, the learning-to-match method according to MLE is
the non-convex objective function. Thus, it leads to hard optimiza-
tion and sub-optimal problem.
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NoisyAnchors [149] explores the model’s feedback to propose
cleanliness scores for anchor boxes. The cleanliness score of an
anchor is computed as a linear combination of localization quality
from localization branch and classification score from classification
branch, as follows:

c ¼ a� IoUðari ; gjÞ þ ð1� aÞ � ccls for ai 2 P

0 for ai 2 N;

(
ð2Þ

where a is a factor to balance the classification score ccls and local-
ization quality-IoUðar

i ; gjÞ between regressed anchor ar
i and ground

truth gj. The cleanliness scores c are used as soft labels in classifica-
tion loss for adjusting the contribution of different anchors to this
loss, and sample re-weighting factors in both classification and
localization losses to down-weight the contribution of noisy
anchors and make the model focus on clean anchors. The positive
sample set P before joining with the network is assigned by sorting
IoU scores between anchor set and ground truth set and then choos-
ing K anchors with the highest ranking as positive samples.

Similar to [148,149], Multiple Anchor Learning (MAL) [150]
firstly constructs positive candidates for each object based on topk
IoUs between anchor boxes and a ground truth box, and then
selects proper positive boxes from candidate boxes. The con-
structed boxes are forwarded to the network to output classifica-
tion and localization confidences. However, updating the
network parameters through SGD is a difficult problem and can
lead to suboptimal results. Therefore, MAL proposes anchor



Fig. 6. The general pipeline of soft anchor assignment consists of two procedures: (1) construct positive candidate boxes according to topk IoUs in anchor-based methods, or
center prior (center sampling) in anchor-free methods; (2) select final assignment by using FreeAnchor [148], NoisyAnchor [149], MAL [150], PAA [151], AutoAssign [152],
POTO [153], and OTA [154]. Positive samples are addressed by visible red, blue, and green boxes. Other boxes are negative samples. Solid lines indicate training flow, and dash
lines denote testing flow.
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depression that reduces the confidence of selected anchors by per-
turbing its features via attention maps. To select final positive sam-
ples from the anchor bag, MAL introduces the All-to-Top-1 strategy
that linearly reduces the number of positive samples from all boxes
(first epoch) to 1 box (last epoch) during training.

Inspired by center prior knowledge (spatial constraints) in FCOS
[118], AutoAssign [152] introduces the differentiable anchor
assignment that automatically separates anchor boxes into posi-
tive and negative samples in a data-driven approach based on Cen-
ter Weighting and Confidence Weighting. Firstly, Center Weighting
models each category distribution using Gaussian distribution with
location offsets inside a ground truth box as variables. Mean and
standard deviation are optimized via the backward pass. Secondly,
Confidence Weighting reshapes the positive and negative weight-
ings of the ground truth locations in both spatial constraint and
scale constraint. Finally, the loss values of positive and negative
samples will be computed and optimal anchor assignment will
be executed jointly with the detection network.

PAA [151] adaptively separates a set of anchors into positive/
negative samples for a ground truth bounding box in a probabilis-
tic manner. Firstly, PAA defines an anchor score that reflects the
quality of the detected bounding box. This score is computed by
multiplying the classification score and IoU score. To train the
model, anchor scores are converted to classification and localiza-
tion losses by using the negative logarithm. Secondly, with these
computed anchor scores, PAA applies Gaussian Mixture Model
(GMM) of two modalities (i.e., corresponding to two sets: positive
sample set and negative sample set) conditioned on the model’s
parameters to represent the distribution of the anchor scores.
Based on anchor probabilities, the boundary of two sets is identi-
fied. For each ground truth box gj, the PAA procedure is summa-
rized as:

� Get all anchors that overlap with ground truth box gj based on
IoU scores.

� For each feature pyramid, compute anchor scores between
selected anchors and the ground truth box. Then, choose the
topK smallest scores.

� Fit GMM to topK smallest scores to find probabilities of two
Gaussian.

� Use the middle of positive anchor distribution as the separation
boundary.Although PAA considers the model’s feedback (classi-
fication and localization losses) into account, it still relies on
hard thresholds, distribution assumptions, and other prior
knowledge for performing the assignment.

According to PAA, Label Assignment Distillation (LAD) [155]
adopts the knowledge distillation technique that uses a small tea-
cher network to produce training samples for a student network.
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This method is a new perspective in anchor assignment literature,
which complements existing soft assignment approaches.

DETR [156] presents the new end-to-end object detection
method, eliminating hand-crafted designs such as Non-Maximum
Suppression (NMS), anchor generator. To remove NMS post-
processing, DETR introduces bipartite matching (i.e., optimal global
matching) that computes one-to-one matching between predic-
tions (i.e., object queries) and ground truth box according to the
global cost matrix C. More specifically, object queries are a set of
learnable positional encoding to reason about the correlation
between objects and image global features to yield the object’s
coordinates and classes, viewed as a set of predictions that initially
encodes the information of objects about positional and semantic
features. In practical implementation, object queries are learned
from random initialization [156], attached anchor points [157],
and attached anchor boxes [158]. Each element of the matrix C
are a weighted sum of three components, as follows:

cij ¼ cclsij þ clocij ¼ p̂rðiÞðliÞ þ kiouLiouðbrðiÞ; gjÞ þ kL1 brðiÞ � gj

�� ��
1
; ð3Þ

where p̂rðiÞ is class probability of class li. brðiÞ is the predicted bound-
ing box. The localization cost is a linear combination of the L1 loss
and GIoU loss (Liou) [159], where kiou; kL1 are the balancing coeffi-
cients. After computing the matching cost, the Hungarian algorithm
is used to find the optimal bipartite matching. As a result, one
ground truth box is only assigned with one prediction without
duplicates. Fig. 7 shows the difference between one-to-one assign-
ment and one-to-many assignment in detection literature and the
benefit of one-to-one prediction in term of simple network and effi-
cient design.

POTO [153] proposes a prediction-aware one-to-one anchor
assignment, which dynamically determines positive samples for
each ground truth box. Instead of matching cost in DETR [156]
and its application [160], POTO defines the matching quality of
classification and localization estimated from model learning sta-
tus. Given the N predictions and G ground truth boxes, the optimal
matching is computed as:

r̂ ¼ arg maxr2SN
G

XjGj
i

Q i;rðiÞ; ð4Þ

where SN
G is a permutation of N elements. Qi;rðiÞ is the matching

quality that takes spatial prior, classification score, and localization
quality into account. It is defined as:

Qi;rðiÞ ¼ 1½rðiÞ 2 Ai� � p̂rðiÞðliÞ
� �1�a � IoUðbi;giÞð Þa ð5Þ

The spatial prior is denoted by 1½rðiÞ 2 Ai�, which selects anchor

candidates Ai for ith ground truth based on the spatial constraint
in FCOS [118] (e.g., if an anchor falls into the center region of ground
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truth box, this anchor is considered as one candidate). The classifi-
cation score p̂rðiÞðliÞ

� �
and localization quality IoUðbi; giÞð Þ are multi-

plied to present the matching quality for ground truth gi where bi is
the predicted box from anchor box/point ai. To find the optimal one-
to-one matching r̂, the Hungarian algorithm is applied for maxi-
mizing the matching quality. To make the anchor assignment more
effective, POTO uses an auxiliary loss according to one-to-many
assignment in ATSS [140] to enhance the strong and robust feature
representation. Both DETR and POTO use one-to-one matching,
which removes the hard NMS and becomes end-to-end detectors.
However, POTO still relies on hand-crafted design for selecting
anchor candidates.

OneNet [161] demonstrates the one-to-one assignment is the
key factor to achieve end-to-end object detection and analyzes
the essential components in solving one-to-one matching. OneNet
states that the classification cost is the main component along with
localization cost and can reduce noisy anchors originated by local-
ization cost.

Unlike existing methods [149,151,153] which only compute the
matching costs between anchor candidates (based on IoU score,
localization cost) and its assigned ground truth box, LLA [162]
computes the matching costs between all anchors and ground
truth boxes, as follows:

C ¼Ccls þ kCloc þ Cinbox ð6Þ

¼LclsðL; Pðh;AÞÞ þ kLlocðG;Bðh;AÞÞ þ Cinbox;

where the cost matrix C 2 RjGj�N is a linear combination of classifi-

cation cost Ccls 2 RjGj�N and localization cost Cloc 2 RjGj�N , where N
and jGj are number of anchor boxes/points and number of ground
truth boxes, respectively. k is balancing the range of two costs.
Pðh;AÞ 2 RjAj�L;Bðh;AÞ 2 RjAj�N are the score predictions and box pre-

dictions, where h is parameters of the detection model. Cinbox is spa-
tial prior that defined in POTO [153]. This spatial prior is added to
the cost matrix to control the model converge. Instead of one
ground truth assigned to one anchor, LLA assigns multiple positive
samples for one ground truth by selecting topK smallest values on
each row of cost matrix C as positive samples and others as negative
samples. If one anchor is assigned to multiple ground truth boxes,
the anchor-ground truth pair with the smallest cost is selected.
Therefore, LLA performs anchor assignment in a fully adaptive man-
ner based on the model’s feedback, which can solve the crowd
occlusion problem in pedestrian detection.

OTA [154] formulates anchor assignment into an optimal trans-
port problem. This method considers one ground truth gi as one
supplier and one anchor as one demander. The cost cij to transport
one positive unit from gi to anchor aj is computed as a linear com-
Fig. 7. The definition of non-end-to-end detection and end-to-end detection relies on t
assignment. The non-end-to-end detector requires the hand-crafted NMS procedure to r
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bination of classification and localization costs that are similar to
previous methods [156,162]. For negative samples, the background
class is another supplier. The cost of this background and an anchor
is only calculated as the pair-wise classification cost. The solution
of optimal transport plan corresponding to the global assignment
results is solved through off-the-shelf Sinkhorn-Knopp Iteration.
An anchor box is assigned as a positive sample if this anchor box
receives enough information of positive label from a ground truth
box gi.

Optimizing the OTA objective through Sinkhorn-Knopp Itera-
tion is hard optimization and takes much additional time for con-
verging the detection model. To overcome this problem, YOLOX
[164] simplifies the OTA assignment by utilizing a dynamic top-k
operation. This assignment is called SimOTA. Instead of selecting
positive anchors via Sinkhorn-Knopp, SimOTA chooses the top-k
smallest costs corresponding to k positive anchors for a ground
truth box.

Feng et al. [165] points out that hard anchor assignment meth-
ods such as RetinaNet [107], FCOS [118], and ATSS [140] generate
assignment results that a spatial location of a positive sample does
not contain the center of the object, and thus, the detection model
produces mislocalized and misclassified predictions. From these
observations, TOOD proposes Task-aligned Sample Assignment
that includes two new designs: a sample assignment procedure
and a task-aligned loss. As shown in Fig. 6, this method has the
same computation as the previous soft anchor assignment. Firstly,
TOOD constructs a positive anchor bag by selecting topk detection
quality where detection quality for one anchor is defined as the
multiplication of classification score and IoU score between the
predicted box and the ground truth. Secondly, the detection quality
is used for reweighting localization loss and representing the clas-
sification target.

Instead of using the same anchor assignment procedure, Musu
[163] assigns different training samples for classification and local-
ization tasks and learns task relatedness through mutual supervi-
sion. Like common soft anchor assignments, Musu constructs
positive candidates for each object. Given ground truth box gj,
model’s feedback {pi; IoUðai; gjÞ}, the quality score Pi used as a cost
metric is defined as:

Pi ¼ piIoUðai; gjÞh; ð7Þ

where h is a scaling factor. To adaptively select positive samples for
ground truth box gj, Musu computes the threshold t as follows:

t ¼ b �max
i

Pi; ð8Þ

where b is a controlling factor. If Pi P t, this anchor is assigned as a
positive sample. To mutually supervise the classification and local-
he definition of soft anchor assignment: one-to-many assignment and one-to-one
emove duplicate bounding boxes, and this post-processing takes additional latency.



Table 3
The statistics of the number of positive and negative samples
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ization head, this method reweights the importance of each
assigned sample based on the ranking of quality scores.
Method #positive samples #negative samples #total samples

RetinaNet [107] 162 167687 167849
FCOS [118] 209 19743 19952
4. Sampling methods

When training the object detection model, most anchor boxes
are assigned as negative samples. Using all samples with the equal
contribution for updating the detection model leads to extreme
imbalance. This imbalance causes: (1) training detector is ineffec-
tive since negative samples do not contain useful features for local-
izing object coordinates, (2) the number of negative samples is too
large for one object, and it can overwhelm training and hamper the
detection performance. To verify our theoretical analysis, we illus-
trate the imbalance between positive and negative samples on the
MS-COCO [95] dataset in Table 3. As a result, in the popular detec-
tor RetinaNet [107] and FCOS [118], the number of positive sam-
ples is much smaller than the number of negative samples.
Therefore, when not figured out, the model heavily pays attention
to negative samples, and this problem directly degrades the final
detection performance.

The solution of this problem is grouped into two methods: hard
sampling methods and soft sampling methods. Fig. 8 illustrates the
difference between hard sampling methods and soft sampling
methods during training.
4.1. Hard sampling methods

From labeled samples in the anchor assignment procedure, hard
sampling methods select the useful set of positive samples and
negative samples, and discard a certain amount of non-useful sam-
ples during training. Therefore, selected samples uniformly con-
tribute to the detection loss, and non-selected samples do not
contribute to the classification and regression losses. Table 2 illus-
trates the strategy of the hard sampling methods in training detec-
tion model.

Random sampling has been widely used in many conventional
detectors such as two-stage detectors [64,73,74,108,125], ran-
domly selecting an amount of samples based on a pre-defined ratio
from two sets. In the RPN stage, the ratio is set to 1 : 1 of 256 sam-
pled anchors corresponding to 128 positive samples and 128 neg-
ative samples from an image in a mini-batch. If the number of
selected positive samples is less than fixed values, it is padded with
random negative samples. For training the R-CNN network, 16 pos-
itive RoIs and 48 negative RoIs are randomly selected in each mini-
batch.

Instead of equally giving the contribution of selected negative
samples to the detection loss, SSD [97] states that training detec-
tors on hard negative samples achieve faster optimization (bring
informative gradients for computing back-propagation), more
stable training, and better performance. The method selects nega-
tive samples with high losses, called hard-sample mining. Firstly,
the model with initial learnable parameters is trained on a subset
of random negative samples. Secondly, this method picks the false
positives (hard samples) and train a new classifier on them again.
These steps are executed iteratively until the model converges.
OHEM [91] proposes online hard example mining, which samples
both negative and positive samples based on loss criterion. How-
ever, OHEM method leads to extra memory, more training times,
and noisy samples.

Rather than selecting negative samples according to their loss
values, Libra R-CNN [90] introduces an IoU-balanced sampling
method that selects negative samples based on IoU intervals.
Firstly, this method computes the IoU scores between negative
samples and ground truth boxes. Secondly, IoU intervals are split
into K bins, and then candidate negative samples are uniformly dis-
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tributed to each bin. Finally, negative samples with higher losses
are selected equally from each bin.

Inspired by the IoU-balanced sampling, Overlap Sampler [166]
computes overlaps among samples (i.e., compute the IoU scores
between positive and negative samples) instead of computing with
ground truth boxes. And then, this method uses overlap scores to
implement sampling that is the same procedure as IoU-balanced
sampling.
4.2. Soft sampling methods

Instead of selecting a sub-set from positive and negative sam-
ples, soft sampling methods use all assigned samples during train-
ing by controlling the contribution of each sample to the
classification loss according to the usefulness of each positive
and negative sample. Each sample i is attached with a weighting
factor xi measured by classification scores, IoU scores, or both to
reshape the loss: xiLcls. Table 4 shows the comparative illustra-
tion of soft sampling methods. In this Table, hard samples indicate
misleading samples that produce high losses during training.
Because of the uncertainty problem (such as complex scenes,
occlusion, ambiguities, blur, and shadow), the anchor assignment
procedure yields ambiguous samples, for example, the samples
belong to the boundary of the positive and negative sets, such as
anchor boxes are misleadingly assigned as positive or negative
due to ambiguities or occlusion. For example, Fig. 9 shows three
hard samples that were misassigned as positive samples. In the
first image, due to occlusion, the green box labeled as a positive
sample for motorcycle class is a hard sample since this green box
contains semantic information of the person class. Thus, this green
box is not only a hard sample for motorcycle class but also for the
person class and it leads to ambiguous learning of the detection
models. In the second image, most of the pixels in the blue box
belong to the background class and thus, this box is a hard samples
for the person class. This problem directly decreases the detection
accuracy.

Focal loss [107] was the first method that dynamically reshapes
Cross-Entropy CE loss, defined as:

FLðpiÞ ¼ xiCEðpiÞ ¼ �að1� piÞcCEðpiÞ; ð9Þ

where a is a balanced variant factor, and pi is the classification score
of a sample i for the ground truth class. If the value pi is close to 1
(well-classified sample corresponding to easy sample), the weight-
ing factor xi approaches to 0, and the loss for this sample is down-
weighted. When a hard sample has a low confidence score (e.g.,
misclassified sample) and the xi goes to 1, the loss is larger. Thus,
FL loss promotes hard samples and down-weights easy samples.

GFL [141] and VFNet [143] extend the Focal loss to a new con-
tinuous version joining classification score and localization quality
as new label. Similar to Focal loss, GFL proposes a weighting factor:
xi ¼ jqi � pijb where qi is continuous target score for sample i and
pi is prediction score. VFNet computes a weighting factor for two
cases: (1) xi ¼ qi when q > 0; (2) xi ¼ aqci when q ¼ 0. Case (2)
will down-weight the contribution of negative samples and case
(1) will not affect the loss values of positive samples. Therefore,
VFNet’s strategy focuses on the contribution of high-quality posi-
tive samples to classification loss than hard samples.



Fig. 8. The difference between (a) hard sampling methods and (b) soft sampling methods. Orange boxes indicate positive samples, and blue boxes denote negative samples.
Hard sampling methods select a subset of assigned anchors by randomly removing some negative samples based on a pre-defined ratio during training. Otherwise, all
samples in soft sampling methods are joined during training and automatically assigned by weighting based on their usefulness. For example, thicker boxes address greater
weighting values.

Table 4
The comparison of hard sampling methods and soft sampling methods between different detectors in the aspects: criterion, strategy, and performance on MS-COCO dataset.

Method Criterion Strategy AP AP50 AP75

Hard Sampling Methods
Random Sampling [74] pre-defined ratio randomly selecting an amount of positive and negative samples. 37.2 59.3 40.3
Hard sample mining[97] classification loss - selecting negative samples with high losses.

- training a new classifier.
29.5 49.3 30.9

OHEM [91] classification loss selecting positive and negative samples with high losses. 37.4 59.5 40.3
IoU-based sampling[90] IoUðai; gjÞ, loss - distributing equal number of negative samples to each IoU bin.

- equally selecting negative samples with higher losses from each bin.
38.3 59.5 41.9

Overlap sampler [166] IoUðaposi ; anegi Þ - selecting negative samples with high IoU scores.
- focusing on easy positive samples with high IoU scores
based on ranking-based method and sample weighting.

38.6 60.2 41.9

Soft Sampling Methods

Focal loss [107] classification score - focusing on hard samples with high losses.
- down-weighting the contribution of easy samples.

36.5 55.4 39.1

GFL [141] classification score,
IoU score

- focusing on hard samples with high losses.
- down-weighting the contribution of easy samples.

40.2 58.4 43.3

VFNet [143] classification score,
IoU score

- focusing on easy samples with high IoU scores.
- down-weighting the contribution of hard samples.

41.6 59.5 45.0

Sampling-Free [167] classification loss,
localization loss,
sample uncertainty

dynamically adjusting classification loss based on guided factor. 38.4 59.9 41.7

GHM [168] classifcation score focusing on hard samples by down-weighting the contribution of
easy samples and outliers.

37.0 55.5 39.2

SWN [169] classification score,
IoU score,
classification loss,
localization loss

- focusing on easy samples.
- down-weighting the contribution of hard samples with
high uncertainty.

38.5 58.7 42.1

PISA [94] classification score,
IoU score

- focusing on positive samples with higher IoU scores.
- focusing on negative samples with higher classification scores.

38.8 59.3 42.7

DW [170] classification score,
IoU score

- focusing on positive samples with higher IoU and classification scores.
- focusing on negative samples with lower IoU scores.

41.5 59.8 44.8
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Sampling-Free [167] analyzes the performance of training
detector with sampling strategy (using Focal loss) and without
sampling (using Cross-Entropy (CE) loss). The experimental results
show that RetinaNet with CE has undesirable stability and leads to
inappropriate classification gradient magnitude due to bias initial-
ization and loss weighting. Instead of weighting the samples, the
Sampling-Free method dynamically adjusts CE loss by introducing

guided factor: gt

r2, where gt ¼ Lloc
LCE

and r is uncertainty weighting

[171].
Through empirical experiments, GHM [168] observed that there

is an imbalance in gradient norm distribution: (1) Too many easy
106
negative samples have slight gradient and overwhelm the contri-
bution of other samples, (2) the number of samples with large gra-
dient norm is bigger than the number of samples with medium
gradient norm. From this analysis, GHM introduces a gradient har-
monizing mechanism that balances gradient norm distribution of
easy and hard samples, computed as: xi ¼ N

GDðAiÞ, where N is the

number of total samples in a mini-batch, GDðaiÞ is the fraction
number of samples that have similar gradient normwith sample ai.

SWN [169] views the sampling procedure in a probabilistic per-
spective and computes the sample’s weighting through uncer-
tainty prediction for both classification and localization tasks.



Fig. 9. Some hard samples of the MS-COCO dataset. Red boxes indicate ground truth bounding boxes, and blue boxes denote hard samples.
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The sample weightings are defined as:xcls
i ¼ e�2 � mcls

i for classifica-

tion loss and xloc
i ¼ e�2 � mloc

i for localization loss, where mcls
i and

mloc
i are learned via several stacked fully-connected layers in which

current loss, classification score and IoU score are concatenated as
input feature. SWN gives the weights to useful samples by down-
weighting the contribution of uncertainty samples (hard samples)
and focusing the model on certainty samples (easy samples). More-
over, these weighting factors are used to leverage multi-task learn-
ing in detection learning. However, this goal is beyond the scope of
this paper.

PISA [94] analyzes the importance of positive samples and neg-
ative samples with regards to AP metric: (1) Based on IoU score
between positive samples and its assigned ground truth box, the
sample with higher IoU score is more important, (2) Based on fore-
ground classification scores, the negative sample with the larger
score is more important. From these observations, PISA proposes
IoU-Hierarchical Local Rank (IoU-HLR) and Score-Hierarchical
Local Rank (Score-HLR) to sort the importance of positive samples
and negative samples, respectively. Specifically, IoU-HLR ranks
positive samples as follows:

1. Compute IoU between predicted bounding boxes and the corre-
sponding ground truth.

2. Split all positive samples into various groups.
3. Sort the samples within each group based on IoU scores with

descending order.
4. Sort again within same-rank group.

Similarly, for negative samples, Score-HLR is performed as:

1. Take the maximum positive score prediction over all fore-
ground classes of each negative sample as si.

2. Suppress negative samples whose si 6 tn, the left samples are
valid samples.

3. Divide valid samples into different groups using NMS-Match.
4. Rank the matched samples in two steps to get Score-HLR: (1) In

the same group, rank samples with their scores; (2) In the same
score rank across different groups, rank samples with their
scores again.

Finally, PISA linearly maps both IoU-HLR and Score-HLR to the
final weighting factors, computed as:
xi ¼ ðð1� bÞui þ bÞc; ð10Þ
where ui ¼ Nmax�ri
Nmax

is a normalized rank for sample i in which Nmax is a
maximum value of samples over all classes, ri is the rank of sample
i. b controls the importance of normalized rank. c is a modulating
factor. Following common strategies, the weighting factor xi is
attached to the classification loss function, giving more contribution
of positive samples with high IoUs and negative samples with high
scores to this loss.
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To better learn the correlation and consistency among tasks,
DW [170] separately computes sample weightings of the negative
and positive samples as follows:

xpos
i ¼ elpiIoU

b � piIoU
b; ð11Þ

xneg
i ¼

pc2i ; if IoU < 0:5
ð�k� IoUc1 þ bÞ � pc2 ; if IoU 2 ½0:5;0:95�

0; if > 0:95;

8><
>: ð12Þ

where l;b; c1; c2 are hyper-parameters to balance prediction val-
ues. As seen in the equations, DW method upgrades the contribu-
tion of positive samples with high IoU and classification scores.
And for negative samples, DW method focuses on hard samples
with low IoU scores.

RS Loss [172] proposes the new sample weighting according to
the ranking method: (1) RS Loss ranks each positive sample that is
higher than all negative samples, (2) RS Loss sorts positive samples
with respect to localization IoU scores. Differently, EQL v2 [173]
observes that there is a gradient imbalance between positive and
negative samples in long-tailed object detectors and EQL [174].
Based on this insight, EQL v2 increases the gradient of positive
samples and decreases the gradient of negative samples by com-
puting the ratio of accumulated gradients.
5. Recent trends in object detection

Convolutional Neural Networks (CNNs) such as [119,120,175–
180] have dominated the field of computer vision, proving the gen-
eralization capability in both modeling and learning. Because the
receptive field of convolution operation is limited to the local
regions, previous methods [181–183,89,127,184–186] design
channel and spatial attention mechanisms to model long-range
dependencies in the visual inputs that complement local convolu-
tion operation. These methods have demonstrated the effective-
ness on different computer vision tasks such as image
classification, object detection, semantic/instance segmentation.
Inspired by the success of the attention mechanism in visual tasks,
in recent years, many researchers have adapted and facilitated
Transformer [187] architecture to object detection, which achieves
significant improvements in both global computation and perfor-
mance, and establishes new state-of-the-art detectors on the chal-
lenging benchmark [95]. Transformer architecture originally was
designed for a sequence-to-sequence machine translation, which
becomes the de facto standard method in most natural language
processing. The core element of the Transformer is the self-
attention block that models long-range dependencies in data. This
promising property brings many advantages to solving visual tasks
such as general modeling capacity (relation of pixel-to-pixel, pixel-
to-object, object-to-object), self-attention to complement CNNs,
powerful operation because of adaptive computation, unified mod-
eling between vision and language, and scalability in both model
and data. The general computation of the self-attention operation
is shown in Fig. 12(a).
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In this section, we will review visual Transformer-based meth-
ods in the last two years. In literature, Transformer-based object
detection is grouped into two kinds: Transformer-based detection
head and Transformer-based feature extraction. Fig. 10 summarily
describes the key milestones in the progresses of the recent trends
in solving the object detection problem.
5.1. Transformer-based detection head

In existing object detectors, the detection head includes two
branches corresponding to classification and regression tasks,
which maps high extracted feature dimension from backbone net-
work to lower feature dimension for a specific task, i.e., generate
classification scores and regressed offsets for hand-crafted anchor
boxes or points. Conventional methods treat two tasks indepen-
dently without leveraging the interaction between bounding box
predictions, or global image features vs. objects. Table 5 shows
the comparison of Transformer-based detection head in two
aspects: key improvements and performance. DETR [156] is the
first end-to-end methods that performs interaction learning
through Transformer operation to reason about detection results
without any specific hand-crafted assumptions. In this year, many
methods improve DETR architecture in various aspects such as effi-
cient self-attention design [188–191], object query improvement
[192–194,157], Transformer encoder, decoder improvement
[195–197], and unsupervised learning [198]. In the following con-
tent, we review some representative methods of original DETR and
its improvements.
Fig. 10. The main milestones in the progress of the Transformer-ba
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DETR (Detection Transformer) [156] introduces a new end-to-
end object detection method that applies Transformer architecture
to the detection head, which achieves promising performance with
two-stage detector Faster R-CNN [74]. The overall network of DETR
is shown and described in Fig. 11. The Transformer encoder is illus-
trated in Fig. 11 and the Transformer decoder network is similar to
the Transformer encoder. In these networks, positional encoding is
a matrix that has the same size as the input sequence, containing
the relationship between tokens in the image/feature sequence
about relative or absolute position of them. The reason for adding
positional encoding with input tokens is that self-attention layers
in Transformer is permutation-invariant [187] (lack of inductive
bias due to no recurrence and convolution in vision Transformer).
To encode the information of the order of image sequence, the
positional encoding is supplemented with the input tokens. In
the literature, there are two kinds of positional encoding: learnable
positional encoding and fixed positional encoding based on sine
and cosine functions. Generally, DETR presents a simple network
architecture that combines the conventional CNNs and Trans-
former, and views object detection results as a direct set prediction
based on bipartite matching between ground truth and prediction
set. This detector assumes a set of object queries is responsible for
determining object locations and is learnable during updating net-
work parameters. Each object query interacts with the global
image feature, aggregates the important features from other
queries, and also adopts the relations of input and output of deco-
der through the attention mechanism. Therefore, DETR extracts
adequate information of bounding boxes, which eliminates hand-
crafted designs such as anchor box generation and NMS procedure.
sed detection head and Transformer-based feature extraction.



Table 5
Comparative performance of DETR and its improvements on MS-COCO validation.

Method Baseline Key improvements Backbone Schedule AP AP50 AP75 #params GFLOPs FPS

DETR [156] – – ResNet-50 500 epochs 42.0 62.4 44.2 41 86 28
Deformable DETR [188] DETR - Multi-scale deformable self-attention

- Box refinement
- Two-stage network

ResNet-50 50 epochs 46.2 65.2 50.0 40 173 19

ACT-MTKD [189] DETR Adaptive clustering Transformer ResNet-50 fine-tuning
(7 epochs)

43.1 – – – 169 –

SMCA [192] DETR Spatially modulated co-attention ResNet-50 50 epochs 43.7 63.6 47.2 40 152 10
Conditional DETR [193] DETR Conditional cross-attention ResNet-50 50 epochs 40.9 61.8 43.3 44 90 –
PnP-DETR [190] DETR Poll and pool sampling module ResNet-50 – 41.8 62.1 44.4 – – –
Dynamic DETR [191] DETR - Dynamic self-attention

- Dynamic cross-attention
ResNet-50 12 epochs 42.9 61.0 46.3 – – –

Efficient DETR [194] DETR Dense prior initialization ResNet-50 36 epochs 44.2 62.2 48.0 32 159 –
DN-DETR [199] DETR Denoising training ResNet-50 12 epochs 41.7 61.4 44.1 44 216 –
DINO [200] DETR - Contrastive denoising training

- Mixed query selection
- Box refinement

ResNet-50 12 epochs 47.9 65.3 52.1 47 279 24

AdaMixer [201] DETR - 3D feature sapce
- Adaptive mixing

ResNet-50 12 epochs 44.1 63.1 47.8 – 132 24
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Although DETR brings a simple and intuitive network architecture
in detection literature, it has two drawbacks:

1. Convergence speed: DETR takes much longer training time than
existing detectors (e.g., needs 500 epochs to get comparable
accuracy) because self-attention and cross-attention blocks
model the relations on large global context image from an ini-
tial dense set to a final sparse set, e.g., four parameters for each
bounding box.

2. Low detection performance on small objects: DETR uses one-level
feature with the lowest resolution of the backbone network for
performing detection which relatively detects large objects on
this feature. Previous detectors apply multi-level feature maps
with various scales, where small objects are identified from fea-
ture maps with larger scales. However, DETR suffers too high
computational cost when using multi-scale feature maps
because the model complexity of the self-attention block
increases quadratically with the input feature map resolution.

To overcome these problems, there are many methods to
improve the self-attention module in the Transformer encoder-
decoder and feature pyramid structure of DETR. Deformable DETR
[188] proposes the deformable attention operation to define a
learnable sparse sampling point set for key elements rather than
using all feature map pixels. Self-attention and cross-attention
modules in both the Transformer encoder and decoder are replaced
with deformable attention. Cao et al. [192] replace the cross atten-
tion module in the Transformer decoder of DETR with Spatially
Modulated Co-Attention (SMCA). SMCA performs element-wise
multiplication between the learnable co-attention maps and object
query weight maps. The co-attention maps model the long-range
dependencies between object query and global image context.
Fig. 11. Firstly, DETR utilizes the CNN network to perform feature extraction from the in
map is flattened to the image feature vector, which is suitable for the Transformer co
encoding is added with the feature vector to serve as input of the Transformer. Thirdly,
and outputs the global image context. Fourthly, the Transformer decoder reasons about
FFNs are feed-forward networks prediction, designed as classification and regression bra
coordinates.
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Object query weight map is generated by modeling the object
query distribution as 2D spatial Gaussian. Meng et al. [193] pro-
pose Conditional DETR that learns a conditional spatial embedding
for each object query. Based on the conditional spatial query, the
cross attention in the Transformer decoder attends to object
extreme points for bounding box regression and valid regions
inside objects for leveraging the classification task. PnP-DETR
[190] reduces computational costs in Transformer by eliminating
redundant information of the global image context through a poll
and pool (PnP) sampling module. To solve two drawbacks of DETR,
Dai et al. [191] propose dynamic attention that applies to both the
Transformer encoder and decoder, named Dynamic DETR. In the
dynamic encoder, Dynamic DETR uses convolution operations to
design different attention blocks estimating the self-attention
mechanism. In the dynamic decoder, Dynamic DETR explores
RoI-based dynamic attention which focuses on RoI features in a
coarse-to-fine manner.

DN-DETR [199] discovers that the slow convergence speed of
DETR originates from the unstableness of bipartite matching. To
overcome this problem, DN-DETR adds noises to ground truth
boxes and considers this signal as noised queries. These noised
queries along with learnable anchor queries are attached to the
Transformer decoder. According to DN-DETR, DINO [200] proposes
three improvements: (1) a contrastive denoising training for both
positive and negative samples mitigates ambiguous learning of
the detectors due to occlusion problems, (2) a mixed query selec-
tion improves anchor query initialization based on positional
encoding and top-k features, and (3) a box refinement is proposed
to update box coordinates twice times.

AdaMixer [201] addresses the slow convergence of the detector
DETR in two aspects: (1) multi-level features can be viewed as 3D
put image and produces a low spatial resolution feature map. Secondly, this feature
mputation (e.g., this vector is considered as a sequence of tokens). The positional
the Transformer encoder model the relationship between a token and other tokens,
the relations of learnable object queries and the global contextual feature. Fifthly,
nches to directly generate the final prediction set of class scores and bounding box



Fig. 12. (a) Self-attention operation is addressed, where Q ;K;V are query matrix, key, and value matrix, respectively. dmodel is the input embedding dimension, and h indicates
a number of self-attention blocks in one multi-head self-attention module. (b) Transformer encoder is illustrated, where Linear is Fully-connected layer to map matrix Q ;K;V
to matrix Q 0;K0;V 0. FFN is the feed-forward network including two consecutive fully-connect layers (FC layers).
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feature space and based on this design, the Adamixer decoder can
select features that rely on object’s variation, (2) an adaptive mix-
ing uses spatial and channel mixing in MLP-mixer [202] to decode
object queries.

5.2. Transformer-based feature extraction

In recent years, many vision Transformer-based backbones have
been proposed for the image classification task such as [203–209],
which achieve promising improvements. However, object detector
requires high-dimension features and multi-scale features to
perform dense predictions while vision Transformer has high
complexity on large dimensions and only outputs a single
Fig. 13. The general architecture of Transformer-based feature extraction. Firstly, Patch
Typical Transformer Blocks are SRA [210], Swin Transformer Block [212], and Focal Tran
contextual features.

Fig. 14. Four types of Transformer Encoder: (a) Stand Transformer Encoder in ViT [203],
(d) Focal Transformer [213].
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low-resolution feature. To leverage Transformer’s strong global
modeling capability, many studies try to incorporate Transformer
as feature extraction into object detection network by constructing
pyramid vision Transformer [210,211], and efficient self-attention
computation [212–215]. Instead of applying the Transformer
architecture to the detection head, state-of-the-art object detectors
try to utilize the Transformer as feature extraction in the backbone
network. Fig. 13 illustrates the general architecture of
Transformer-based feature extraction where all stage is the same
architecture and Fig. 14 describes four types of Transformer Enco-
der. Originally, the Transformer [187] used in Natural Language
Processing (NLP) tasks requires a 1D sequence of tokens. To process
the high dimension of visual data, patch embedding is proposed to
Embedding splits the input image into patches (a sequence of tokens). Secondly,
sformer Block [213], which model the relations of patches and produce the global

(b) Spatial-Reduction Attention in PVT [210], (c) Swin Transformer Block [212], and
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separate input images/features into a sequence of flattened
patches. Given the image feature Fi 2 RHi�Wi�Ci at stage i, the output

of the patch embedding is the patch feature Fp
i 2 RN�ðP2CiÞ, where

Hi;Wi;Ci are the height, width, and channels of the feature map,
N ¼ ðHiWiÞ=P2 is the number of patches, and P is the patch size.
In the common implementations [203,210,212], patch embedding
is performed by a convolution layer with kernel size P and stride P.

PVT [210] empowers Vision Transformer (ViT) [203] originally
designed for the image classification task to dense object detection
by employing the feature pyramid from the conventional CNNs.
The combination between ViT and feature pyramid network is
called Pyramid Vision Transformer (PVT) that served as a versatile
backbone for many dense predictions. The difference between ViT
and PVT is the feature map resolution. The size of ViT’s output is
similar to the input size and thus, all stages in the network use
single-scale. It leads to high model complexity when applying
the ViT-based backbone to dense predictions that require high res-
olution and multi-scale feature maps. PVT solves these problems
by constructing the feature pyramid with different scales, and this
structure can generate global receptive fields suitable for the object
detection task. Fig. 14(a) shows the Spatial-Reduction Attention
(SRA) in PVT that reduces the spatial dimension of Key Matrix
and Value matrix via spatial reduction operation using convolution
layer with different strides.

Liu et al. [212] propose the Swin Transformer that is a simple
and efficient operation. Swin Transformer uses shifted window
partition between neighborhood self-attention modules instead
of the sliding window in ViT and PVT. Fig. 14(c) shows the swin
transformer block including two important components: Window
Multi-Head Attention and Shifted Window Multi-Head Attention.
Both attentions are calculated within local windows based on a
hierarchical manner. And a shifted window partitioning method
models the relations between non-overlapping windows. More-
over, the number of patches in each window is not changed. There-
fore, the model complexity of the Swin Transformer is linear with
input size.

Yang et al. [213] introduce the Focal Transformer in which Focal
self-attention with less computational costs is a key element that
models fine-grained local and coarse-grained global dependencies
in visual data. Firstly, the Focal Transformer partitions the input
feature map into multiple windows on multi-scale feature maps,
and tokens are share the same set of neighborhood regions. Sec-
ondly, multiple levels of tokens are concatenated to calculate the
Key and Value Matrices. Finally, the Focal Transformer computes
attentions based on standard Multi-head self-attention.

Nowadays, Transformer-based feature extraction and detection
head have dominated in solving object detection. Soft Teacher
[216] uses Swin Transformer-based backbone, which achieves
the best detection performance on MS-COCO dataset (e.g., 61.3%
AP) versus existing methods. Many researchers have applied DETR
and Deformable DETR for solving other tasks such as multiple
object tracking [217–220], instance segmentation [221–223].

6. Open issues

Anchor Assignment Methods. Many methods to separate prior
anchor boxes into positive samples and negative samples for effi-
ciently training detectors have been introduced, analyzed in two
groups: hard anchor assignment and soft anchor assignment. How-
ever, recent researches leave some unsolved issues that require
more investigation:

1. Most of the advanced anchor assignments [153,161,154,164]
relies on prior assumption such as prior center, IoU-based
method, or L1 distance to construct a positive bag. This strategy
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points out some phenomena: (i) Defining hard thresholds
requires more experiments and time-consuming; (ii) It pro-
duces a large number of noisy anchor boxes/anchor points for
the next step.

2. Commonmethods apply the linear combination of classification
and localization losses for constructing the cost matrix. How-
ever, it leads to objective imbalance due to the different proper-
ties of multi-task learning such as: (i) The range and gradient
norm of different losses might be different; (ii) The difficulty
of each task is different.

3. Common anchor assignment methods weakly take challenging
problems such as occlusion, ambiguity, and irregular objects
into account. It leads to ambiguous learning during optimizing
the model and degraded performance.

Sampling Methods. In recent years, many methods have been
proposed to determine the usefulness of the positive samples
and negative samples according to many criteria such as hard
example mining, IoU score, and confidence score. Although these
methods achieve significant improvements, there are some open
issues that need more studies:

1. Defining the criterion of sample weighting needs more consid-
eration. Some methods use classification scores to compute
sample weighting, unexpectedly outputting many outliers dur-
ing sampling and hindering the detection model. Unifying all
criteria (classification score, IoU score, classification loss, and
localization loss) into one sampling metric to generate optimal
sample weighting needs more investigation.

2. There is an inconsistency between focusing on easy samples
[94,143] and focusing on hard samples [97,91] during training.

3. Most of the soft samplingmethodsonly control the contributionof
useful samples to the classification loss.However, objectdetection
solves classification and localization tasks simultaneously, and
only considering the classification term during sampling leads to
objective imbalance. Therefore, reshaping the localization loss
based on sample weighting opens challenging problems.

Transformer-based object detection. Transformer-based
object detection has become a new trend in the object detection
community, achieving fast progresses during recent years and out-
performing CNN-based object detection in both performance and
efficiency. According to the analysis in Section V, Transformer-
based object detection needs further studies:

1. The combination of vision Transformer and CNN’s architecture
lacks investigation. Since self-attention operation in Trans-
former complements to CNNs, only several methods try to inte-
grate Transformer into conventional CNNs networks.

2. Designing Transformer architecture based on CNNs’ character-
istics such as hierarchical property [120], dense connection
[176], and high-resolution network [179] can improve
performance.

3. The design of random object queries is arbitrary and unsuitable
for object detection, i.e., difficult to optimize. Object queries are
computed based on prior anchor points or anchor boxes that
need more studies by researchers.

4. One-to-one matching in DETR and its variants can not solve
ambiguous anchors that are aforementioned in Section IV.

5. Designing light-weight Transformer architectures [224] for
mobile devices or embedded devices is still open.

7. Conclusion

This paper presents a thorough review of the main components:
anchor assignment and sample sampling in object detection net-
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works. State-of-the-art detectors heavily rely on these components
to efficiently train the detection network. In order to provide a lar-
ger view, we grouped the advanced methods in a problem-based
taxonomy and its solutions. Based on the problem-based taxon-
omy, each method is discussed and analyzed systematically.
Besides, we identified the advantages and disadvantages of each
problem in-depth, and introduced research issues. Moreover, we
provided the recent trends in object detection that modern detec-
tors entirely apply vision Transformer operation to detection net-
work architecture in which Transformer-based feature extractor
and Transformer-based detection head have been attracted much
attention from object detection researchers during the last two
years. We hope the object detection community can identify the
current status of object detection methods to propose better solu-
tions to anchor assignment, sample sampling, and Transformer-
based methods in object detection research.
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